期刊文献+

基于特征融合的层次结构微博情感分类 被引量:6

Hierarchical micro-blog sentiment classification based on feature fusion
下载PDF
导出
摘要 情感分类是观点挖掘的热点研究之一,微博文本情感分类具有很高的应用价值。鉴于传统特征选择方法存在语义缺陷,采用神经网络语言模型,提出了基于概率模型的对词向量进行权重分配的深层特征表示方法,构建文本语义向量。将文本深层特征与浅层特征融合,构建融合语义信息的特征向量,弥补传统特征选择方法语义的缺陷。采用SVM层次结构分类模型,实现多种情感分类。实验结果表明,采用特征融合的层次结构情感分类方法,能有效提高微博情感分类的准确率。 Abstract: Sentiment classification is an important issue of opinion mining~ It has a high application value to classify sentiment in micro-blogs. As traditional feature selection method has semantic gap, a neural network language model was used to propose a deep feature representation method based on probability model to distribute weight to the word vector. Using this method, text semantic vector could be built. In order to avoid the semantic gap~ the deep features and shallow features of text were integrated and feature vector that contained semantic information was constructed. With SVM hierarchical classification model, a variety of sentiments could be classified. Experimental results show that the hierarchical sentiment classification method based on feature fusion can improve the accuracy of sentiment classification in micro-blogs.
出处 《电信科学》 北大核心 2016年第7期106-114,共9页 Telecommunications Science
基金 国家自然科学基金资助项目(No.61373068 No.61271399) 宁波市科技计划基金资助项目(No.2015A610128 No.2015C50053 No.2015D10011 No.2011B81002) 高等学校博士学科点专项科研基金资助项目(No.20133305110004)~~
关键词 情感分类 词向量 深层特征 特征融合 层次结构分类模型 sentiment classification, word vector, deep feature, feature fusion, hierarchical classification model
  • 相关文献

参考文献16

  • 1PANG B,LEE L,VAITHYANATHAN S.Thumbs up sentiment classification using machine learning techniques[J].Computer Science,2009(10):79-86.
  • 2PANG B,LEE L.Seeing stars:exploiting class relationships for sentiment categorization with respect to rating scales[J].Arxiv Cornell University Library,2004:115-124,ar Xiv:cs/0506075v1.
  • 3ALAM C O,ROTH D,SPROAT R.Emotions from text:machine learning for text-based emotion prediction[C]//Conference on Human Language Technology and Empirical Methods in Natural Language Processing,October 6-8,2005,Vancouver,British Columbia,Canada.New York:ACM Press,2005:579-586.
  • 4ECKMAN P.Universal and cultural differences in facial expression of emotion[EB/OL].[2016-05-02].https://www.researchgate.net/publication/248224937_Universal_and_cultural_differences_in_facial_expression_of_emotion.
  • 5GHAZI D,INKPEN D,SZPAKOWICZ S.Hierarchical versus flat classification of emotions in text[C]//NAACL HLT 2010Workshop on Computational Approaches to Analysis and Generation of Emotion in Text,June 5,2010,Los Angeles,USA.New York:ACM Press,2010:140-146.
  • 6GHAZI D,INKPEN D,SZPAKOWICZ S.Hierarchical approach to emotion recognition and classification in texts[M].Berlin:Springer,2010:40-50.
  • 7HUANG S,PENG W,LI J,et al.Sentiment and topic analysis on social media:a multi-task multi-label classification approach[C]//The 5th Annual ACM Web Science Conference,May 2-4,2013,Paris,France.New York:ACM Press,2013:172-181.
  • 8LIU S M,CHEN J H.A multi-label classification based approach for sentiment classification[J].Expert Systems with Applications,2015,42(3):1083-1093.
  • 9XU H,YANG W,WANG J.Hierarchical emotion classification and emotion component analysis on chinese micro-blog posts[J].Expert Systems with Applications,2015,42(22):8745-8752.
  • 10CHO S H,KANG H B.Text sentiment classification for SNS-based marketing using domain sentiment dictionary[C]//2012 IEEE International Conference on Consumer Electronics(ICCE),Jan 13-16,2012,Las Vegas,NV,USA.New Jersey:IEEE Press,2012:717-718.

二级参考文献15

  • 1Ren Fuji, Kang Xin. Employing hierarchical Bayesian networks in simple and complex emotion topic analysis. Computer Speech and Language, 2013, 27 (4): 943-968.
  • 2Caro L D, Grella M. Sentiment analysis via depen- dency parsing. Computer Standards & Interfaces, 2013, 35(5): 442-453.
  • 3Loia V, Senatore S. A fuzzy-oriented sentic analysis to capture the human emotion in Web-based content. Knowledge-Based Systems, 2014, 58(1): 75-85.
  • 4Wang Changbo, Xiao Zhao, Liu Yuhua, et al. SentiView: sentiment analysis and visualization for internet popular topics. IEEE Transactions on Human- Machine Systems, 2013, 43(6): 620-630.
  • 5Lee S Y M, Chen Ying, Huang Churen, et al. Detecting emotion causes with a linguistic rule-based approach. Computational Intelligence, 2013, 29(3): 390-416.
  • 6Mohammad S M, Turney P D. Crowdsourcing a word- emotion association lexicon. Computational Intelli- gence, 2013, 29(3): 436-465.
  • 7Crowdsoureing a word- Computational Intelli- Francisco V, Gervas P. Emotag: an approach to automated markup of emotions in texts. Compu- tational Intelligence, 2013, 29(4): 680-721.
  • 8Zhang Jinson, Huang Maolin. 5Ws model for bigdata analysis and visualization // 2013 IEEE 16th International Conference on Computational Science and Engineering. Sydney, 2013:1021-1028.
  • 9Mukhopadhyay S, Palakal M, Maddu K. Multi-way association extraction and visualization from biolo- gical text documents using hyper-graphs: applications to genetic association studies for diseases. Artificial Intelligence in Medicine, 2010, 49(3): 145-154.
  • 10Zhang Chenghai, Liu Yuhua, Wang Changbo. Time- space varying visual analysis of micro-blog sentiment // The 6th International Symposium on Visual Information Communication and Interaction. New York: ACM, 2013:64-71.

共引文献15

同被引文献54

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部