期刊文献+

我国铁矿石进口价格预测的ECM-SVR混合模型 被引量:4

A hybrid ECM-SVR model for iron ore price forecasting in China
原文传递
导出
摘要 作为钢铁工业生产的重要原材料之一,铁矿石进口价格的剧烈波动给我国钢铁企业带来巨大的冲击.本文通过分析影响铁矿石价格波动的多种因素,包括供需关系、运费成本、国内外经济环境等,挖掘影响铁矿石进口价格的关键因素,综合考虑其线性和非线性均有的复杂时间序列特征,提出一种基于误差修正模型(error correction model,ECM)和支持向量回归(support vector regression,SVR)的铁矿石价格混合预测模型ECM-SVR.实证结果表明:与单一基准模型和传统混合模型相比,新模型具有较高的预测准确率,这对于钢铁企业控制原料成本和市场投资者合理规避价格风险具有重要指导作用. As an important raw material for iron and steel industry, the fluctuation of iron ore price brings great impact and risk to iron and steel enterprises in China. For exploring the main factors affecting market price, a systematic analysis is conducted on iron ore supply, demand, freight costs and macroeconomic environment, taking into account the complexity of a time series which behaves both linear and nonlinear characteristics, a new hybrid ECM-SVR model based on error correction model and support vector regres- sion is proposed for iron ore price forecasting. The empirical results demonstrate that the hybrid model has higher prediction accuracy compared with single models and traditional hybrid model. This study is instructive for the steel enterprises to control the cost of raw materials and for the market investors to avoid the price risk.
作者 杨留星 王珏
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2016年第7期1769-1777,共9页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71271202)~~
关键词 铁矿石价格 ECM SVR 混合模型预测 iron ore price ECM SVR hybrid forecasting model
  • 相关文献

参考文献18

  • 1Guo L. Study on price-setting power of China's iron ore import[D]. Shanghai:Tongji University, 2007.
  • 2W?rell L. The effect of a change in pricing regime on iron ore prices[J]. Resources Policy, 2014, 41:16-22.
  • 3Chen M Y. The empirical analysis of the iron ore price affecting macro-economic[D]. Hangzhou:Zhejiang Sci-Tech University, 2010.
  • 4陈荣,梁昌勇,陆文星,宋国锋,梁焱.基于季节SVR-PSO的旅游客流量预测模型研究[J].系统工程理论与实践,2014,34(5):1290-1296. 被引量:35
  • 5孙宇星,关伟,葛昱,张广厚,杨雪.基于支持向量机方法的轨道交通乘客旅行时间短时预测方法研究[J].系统工程理论与实践,2014,34(6):1587-1592. 被引量:10
  • 6张金良,谭忠富.混沌时间序列的混合预测方法[J].系统工程理论与实践,2013,33(3):763-769. 被引量:15
  • 7Wang J Z, Zhu W J, Zhang W Y, et al. A trend fixed on firstly and seasonal adjustment model combined with the e-SVR for short-term forecasting of electricity demand[J]. Energy Policy, 2009, 37:4901-4909.
  • 8Pai P F, Lin C S. A hybrid ARIMA and support vector machines model in stock price forecasting[J]. Omega, 2005, 33:497-505.
  • 9Xie G, Wang S Y. Hybrid approaches based on LSSVR model for container throughput forecasting:A comparative study[J]. Applied Soft Computing, 2013, 13:2232-2241.
  • 10Zhu B Z, Wei Y M. Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology[J]. Omega, 2013, 41:517-524.

二级参考文献56

共引文献56

同被引文献64

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部