期刊文献+

高性能混凝土构件中碱硅酸反应与延迟性钙矾石形成共存破坏 被引量:10

Coexistence of Alkali Silica Reaction and Delayed Ettringite Formation in a Cracked High Performance Concrete Element
原文传递
导出
摘要 针对短期服役4 a即开裂破坏的某混凝土构件,采用化学分析、X射线荧光分析、X射线衍射分析和热重分析检测了混凝土芯样浆体的化学和矿物组成,采用岩相法和扫描电镜/能谱分析观测了芯样的微观结构。结果表明:混凝土中部分细集料和少量粗集料发生了明显的碱硅酸反应;混凝土浆体-集料界面区存在大量不同形貌钙矾石异常富集生长,且在浆体-集料界面区发现相伴而生的碱硅酸凝胶和钙矾石产物。混凝土构件破坏是一较为典型的碱硅酸反应与延迟性钙矾石形成共存破坏案例。 The concrete cores drilled from a cracked elements were examined by various testing methods to clarify the cracking of some concrete elements after 4-years in service. The chemical and mineral compositions of the paste in concrete cores were characterized by chemical analysis, X-ray fluorescence, X-ray diffraction and thermogravimetric analysis. The microstructure of the cores was analyzed by the petrographic method and scanning electron microscopy/energy dispersive spectrum. The results show that the amount of fine aggregates and some coarse aggregates show typical signs of the alkali-silica reaction. Ettringites with various morphologies were richly formed in the interfacial transition zone (ITZ) between aggregate and paste. The coexistence of the alkali-silica gel and ettringite also occurs in the ITZ between aggregate and paste. The deterioration of the concrete elements is a typical case caused by the combination of alkali silica reaction and delayed ettringite formation.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2016年第8期1091-1097,共7页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金(51472116)资助项目
关键词 高性能混凝土 碱硅酸反应 延迟性钙矾石形成 开裂 混凝土耐久性 high performance concrete alkali silica reaction delayed ettringite formation cracks concrete durability
  • 相关文献

参考文献23

  • 1MIELENZ R C, MARUSIN S L, HIME W G, et al. Investigation of prestressed concrete railway tie distress[J]. Concr Int, 1995, 17(12): 62-68.
  • 2LEE H, CODY R D, CODY A M, et al. The formation and role of ettringite in Iowa highway concrete deterioration[J]. Cem Concr Res, 2005, 35(2): 332 343.
  • 3COLLEPARDI M. A state-of-the-art review on delayed ettringite attack on concrete[J]. Cem Concr Compos, 2003, 25(4): 401-407.
  • 4BAUER S, CORNELL B, FIGURSK1 D, et al. Alkali-silica reaction and delayed ettringite formation in concrete: A literature review[R]. FHWA/TX-06/0-4085-1, Texas: Texas Department of Transportation, 2006: 71.
  • 5SHAYAN A, QUICK G W. Alkali-aggregate reaction in concrete railway sleepers from Finland[A]//Proc 16th Int Conf Cem Microsc[C]. Duneanville, USA, 1994: 69-79.
  • 6SHAYAN A, QUICK G W. Microscopic features of cracked and uncracked concrete railway sleepers[J]. AC1 Mater J, 1992, 89(4): 348-361.
  • 7OBERHOLSTER R E, MAREE H, BRAND J H B. Cracked prestressed concrete railway sleepers: alkali-silica reaction or delayed ettringite formation[A] //Proc 9th ICAAR[C]. London, UK, 1992(2): 739-749.
  • 8LAWRENCE B L, MOODY E D, GUILLEMETTE R N, et al. Evaluation and mitigating measures for premature concrete distress in Texas department of transportation concrete elements[J]. Cem Concr Aggreg, 1999, 21(1): 73-81.
  • 9THOMAS M, FOLLIARD K, THANO D, et al. Diagnosing delayed ettringite formation in concrete structures[J]. Cem Concr Res, 2008, 38(6): 841-847.
  • 10OLAVE M K E, BRACC1 J M, GARDONI P, et al. Performance of RC columns affected by ASR. I: Accelerated exposure and damage[J]. J Bridge Eng, 2015, 20(3): 0414069.

二级参考文献19

  • 1Stark D. Alkali-aggregate reactivity in the Rocky Mountain region[ A]. In: Proc. 4th Int. Conf. on AAR[ C], Purdue, USA, 1978: 235-244.
  • 2Coustautiner D, Diamond S. Alkali release from feldspars into pore solutions [ J ]. Cement and Concrete Research ,2003,33 (4) : 549-554.
  • 3Berube M A,Dorion J F, Rivest M. Laboratory assessment of alkali contribution by aggregates to concrete and application to concrete structures affected by ASR [ J 1. Cement and Concrete Research,2002,32 (8) : 1215-1227.
  • 4Nixon P J, Page C L. Pore solution chemistry and alkali aggregate reaction [ J ]. ACI Special Publication, 1987,100:1833-1862.
  • 5Berra M. Effect of fly ash on alkali-silica reaction[ A]. Proceeding of 10th International Conference on AAR in Concrete. Melbourne, Australia, 1996: 61-71.
  • 6Duchesne J, Berube M A. The effectiveness of supplementary cementitious materials in suppressing expansion due to ASR: another look at the reaction mechanisms-Part2 : pore solution chemistry[ J]. Cement and Concrete Research, 1994,24(2) : 221-230.
  • 7Leming M L, Nguyen B Q. Limits on alkali content in cement-Resuhs from a field study [ J]. Cement Concrete and Aggregates,2000,22 ( 1 ) : 41- 47.
  • 8Barneyback R, Diamond S. Expression and analysis of pore fluids from hardened cement paste and mortars [ J ]. Cement and Concrete Research, 1981,11(2) : 279-255.
  • 9Sagues A A, Moreno E I, Andrade C. Evolution of pH during in-situ leaching in small concrete cavities [ J ]. Cement and Concrete Research, 1997, 27( 11 ) : 1747-1759.
  • 10Berube M A,Frenette J,Rivest M,et al. Measurement of the Alkali Content of Concrete Using Hot-Water Extraction[ J]. Cement, Concrete, and Aggregate,2002,24( 1 ) : 28-36.

共引文献4

同被引文献125

引证文献10

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部