期刊文献+

小球藻抽脂残留物培养产气肠杆菌的制氢研究 被引量:1

Cultivation of Enterobacter Aerogenes for Hydrogen Production with Lipid Extracted Microalgal Biomass Residues
下载PDF
导出
摘要 为使高效产氢产气肠杆菌能够运用到实际生产中,探索并且优化以小球藻抽脂残留物的水解产物为底物的厌氧批次产氢发酵实验参数.采用中心组合设计,通过三次平行实验取得的数值,拟合得到反映温度、接种量和p H值与产氢量之间关系的多元二次回归模型,以产氢率为响应值,进行响应面分析.方差分析结果显示,该模型的显著性和可靠性较高,拟合效果良好.该模型预测出最佳产氢结果为54.22 m L/g小球藻抽脂残留物,产氢条件为温度37.55℃,接种量12.25%,p H值5.95.进行了厌氧批次发酵产氢验证实验,实际结果为小球藻抽脂残留物的产氢量为54.61 m L/g,与预测值十分接近,说明该模型能较好反应三因素对产氢量的影响.优化了高效产氢菌利用廉价底物发酵产氢的运行条件,为实现生产氢气的过程与有机废弃物无害化处理相耦合提供了新思路. To examine the feasibility of cultivating Enterobacter aerogenes for hydrogen production with lipidextracted microalgal biomass residues,the anaerobic batch fermentations from microalgal hydrolysate wereconducted and their key parameters were optimized using response surface methodology.The central compositedesigns were performed,and a quadratic regression model based on temperature,p H,inoculum and hydrogenyield was obtained from the triplicate experimental data.The analysis of variances indicates that the model hasgood fitting degree.The predicted maximum hydrogen yield of 54.22 m L/g of lipid extracted microalgal bio-mass residues was obtained when the temperature,p H and inoculum were respectively at 37.55 ℃,5.95 and12.25%.The confirmatory experiments showed that the mutant evolved hydrogen yield of 54.61 m L/g of lipidextracted microalgal biomass residues in the optimal conditions.The coincident result verified the practicabilityof the model.This study indicates that a strategy of cultivating Enterobacter aerogenes for hydrogen productionwith lipid extracted microalgal biomass residues has great potential for the large scale of production.
出处 《武汉工程大学学报》 CAS 2016年第4期313-318,342,共7页 Journal of Wuhan Institute of Technology
基金 中央高校基本科研业务费专项资金(2010MS029)
关键词 产气肠杆菌 生物制氢 小球藻提脂残留物 响应面法 Enterobacter aerogenes biohydrogen lipid extracted microalgal biomass residues response surface methodology
  • 相关文献

参考文献1

二级参考文献25

  • 1Show KY, Lee D J, Tay JH, et al. Biohydrogen production: Current perspectives and the way forward. Int J Hydrogen Energy, 2012, 37(20): 15616-15631.
  • 2Fan Z, Yuan L, Chatterjee R. Increased hydrogen production by genetic engineering of Escherichia coli. PLoS ONE, 2009, 4(2): e4432.
  • 3Heuser F, Schroer K, Liitz S, et al. Enhancement of the NAD(P)(H) pool in Escherichia coli for biotransformation. Eng Life Sci, 2007, 7(4): 343-353.
  • 4Ying W. NAD+ and NADH in cellular functions and cell death. Front Biosci, 2006, 11(9): 3129-3148.
  • 5Zhang C, Lv FX, Xing XH. Bioengineering of the Enterobacter aerogenes strain for biohydrogen production. Bioresour Technol, 2011, 102(18): 8344-8349.
  • 6Kumar N, Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem, 2000, 35(6): 589-593.
  • 7Tanisho S, Ishiwata Y. Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes. Int J Hydrogen Energy, 1994, 19(10): 807-812.
  • 8Bai LP, Wua XB, Jiang L J, et al. Hydrogen production by over-expression of hydrogenase subunit in oxygen-tolerant Klebsiella oxytoca HP 1. Int J Hydrogen Energy, 2012, 37(17): 13227-13233.
  • 9Berrios-Rivera S J, San KY, Bennett GN. The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD~ ratio, and the distribution of metabolites in Escherichia coli. Metab Eng, 2002, 4(3): 238-247.
  • 10Self WT, Hasona A, Shanmugam KT. Expression and regulation of a silent operon, hyf, coding for hydrogenase 4 isoenzyme in Escherichia coli. J Bacteriol, 2004, 186(2): 580-587.

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部