期刊文献+

基于Legendre伪谱法的3D刚体摆姿态轨迹跟踪控制

Trajectory Tracking Control of 3D Rigid Body Pendulum Attitude Based on Legendre Pseudospectral Method
下载PDF
导出
摘要 研究3D刚体摆在有初始扰动情况下的姿态运动最优控制问题。结合3D刚体摆转动的姿态与角速度特点,针对外部扰动设计闭环反馈姿态跟踪控制器。首先,利用Legendre伪谱法规划出3D刚体摆开环的姿态运动轨迹。然后,将系统的运动方程线性化,并以3D刚体摆的实际运动姿态轨迹与参考运动姿态轨迹之间的差值作为控制量,将姿态跟踪问题转换为线性时变系统的姿态调节问题。最后,对基于Legendre伪谱法的3D刚体摆姿态最优控制的闭环控制方法进行仿真分析,验证在具有初始扰动情况下算法的有效性。 The optimal control of the attitude motion of 3D rigid pendulum with initial disturbance is investigated. Combined with the characteristics of the attitude and angular velocity of the 3D rigid pendulum, the closed-loop feedback attitude tracking controller is designed for the external disturbance. Firstly, 3D rigid pendulum attitude trajectory is designed for open loop by use of Legendre pseudospectra method. Then the system's motion equation is linearized, and the difference between the attitude reference trajectory and actual trajectory motion in 3D rigid pendulum is considered as control variable. Attitude tracking problem is converted to linear time-varying systems attitude regulation problem. Finally, the closed-loop control based on the Legendre pseudospectral method is simulated and analyzed for the optimal control of 3D rigid pendulum, and simulations show that the effectiveness in the case of initial disturbance.
作者 戈新生 朱宁
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第4期619-626,共8页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金(11472058)资助
关键词 3D刚体摆 姿态控制 最优控制 伪谱法 3D rigid pendulum attitude control optimal control pseudospectral method
  • 相关文献

参考文献13

  • 1Shen J, Sanyal A K, Chaturvedi N A, et al. Dynamics and control of a 3D pendulum // Proceedings of the 43rd 1EEE Conference on Decision and Control. Bahamas, 2004:323-328.
  • 2Chaturvedi N A, Lee T, Leok M, et al. Nonlinear dynamics of the 3D pendulum. SIAM Journal on Applied Dynamical Systems, 2007, 7(2): 144-160.
  • 3Gong Q, Ross I M, Kang W, et al. Connections between the convector mapping theorem and conver- gence of pseudospectral methods for optimal control. Computational Optimization and Applications, 2008, 41:307-335.
  • 4雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406. 被引量:125
  • 5Fahroo F, Ross I M. Direct trajectory optimization by a Chebyshev pseudospectral method. Journal of Gui- dance, Control, and Dynamics, 2002, 25(1): 160-166.
  • 6Shamsi M, Dehghan M. Determination of a control function in three-dimensional parabolic equations by Legendre pseudospectral method. Numeral Methods Partial Differential Equation, 2012, 28:74-93.
  • 7朱宁,戈新生.勒让德伪谱法求解三维刚体摆姿态运动最优控制问题[J].力学与实践,2015,37(4):481-487. 被引量:1
  • 8Lu P. Regulation about time-varying trajectories: precision entry guidance illustrated. Journal of Gui- dance, Control, and Dynamics, 1999, 22(6): 784-790.
  • 9Yah H, Fahroo F, Ross I M. Optimal feedback control laws by legendre pseudospectral approximations // Proceedings of the American Control Conference. Piscataway, 2001:2388-2393.
  • 10庄宇飞,黄海滨.欠驱动航天器实时最优控制算法设计[J].系统工程与电子技术,2013,35(7):1477-1485. 被引量:2

二级参考文献56

  • 1王芳,张洪华.欠驱动刚性航天器旋转轴稳定研究[J].宇航学报,2007,28(5):1133-1137. 被引量:13
  • 2戈新生,孙鹏伟.欠驱动刚性航天器姿态的非完整运动规划粒子群算法[J].宇航学报,2006,27(6):1233-1237. 被引量:7
  • 3[1]Betts J T.Survey of numerical methods for trajectory optimization[J].Journal of Guidance,Control and Dynamics,1998,21(2):193-206.
  • 4[2]Ross I M,Fahroo F.A perspective on methods for trajectory optimization[C].In.AIAA/AAS Astrodynamics Specialist Conference and Exhibit.Monterey,CA,2002:1-7.
  • 5[3]Hull D G.Conversion of optimal control problems into parameter optimization problems[J].Journal of Guidance,Control and Dynamics,1997,20(1):57-60.
  • 6[4]Enright P J,Conway B A.Optimal finite-thrust spacecraft trajectories using collation and nonlinear programming[J].Journal of Guidance,Control and Dynamics,1991,10(5).
  • 7[10]Lu P.Inverse dynamics approach to trajectory optimization for an aerospace plane[J].Journal of Guidance,Control and Dynamics,1993,16(4):726-732.
  • 8[11]Bellman R E.Dynamic Programming[M].Princeton,USA:Princeton University Press,1957.
  • 9[13]Luus R.Iterative dynamic programming:from curiosity to a practical optimization procedure[J].Control and Intelligent Systems,1998,26:1-8.
  • 10[14]Bousson K.Single Gridpoint Dynamic Programming for trajectory Optimization[C].In.AIAA Atmospheric Flight Mechanics Conference and Exhibit.San Francisco,California,2005:1-8.

共引文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部