期刊文献+

基于Riesz导数的分数阶Birkhoff系统的Noether对称性与守恒量 被引量:6

Noether Symmetry and Conserved Quantity for Fractional Birkhoffian Systems in Terms of Riesz Derivatives
下载PDF
导出
摘要 提出并研究Riesz分数阶导数下分数阶Birkhoff系统的Noether对称性与守恒量。分别在RieszRiemann-Liouville分数阶导数和Riesz-Caputo分数阶导数下,建立分数阶Pfaff变分问题,给出分数阶Birkhoff方程。基于分数阶Pfaff作用量在无限小变换下的不变性,建立分数阶Birkhoff系统的Noether定理。定理的证明分成两步:一是在时间不变的无限小变换下给出证明;二是利用时间重新参数化技术得到一般情况下的分数阶Noether定理。最后举例说明结果的应用。 The Noether symmetry and the conserved quantity for a fractional Birkhoffian system in terms of Riesz fractional derivatives are studied. The fractional Pfaff variational problems are presented and the fractional Birkhoff's equations are established within Riesz-Riemann-Liouville fractional derivatives and Riesz-Caputo fractional derivatives, respectively. Based on the invariance of the Pfaff action under the infinitesimal transformations, the Noether theorems for the fractional Birkhoffian system are given. The proof of the Noether theorem is done in two steps: first, the Noether theorem under a special one-parameter group of infinitesimal transformations without transforming the time is proved; second, by using a technique of time-reparameterization, the Noether theorem in its general form is obtained. Two examples are given to illustrate the application of the results.
作者 张毅 周燕
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第4期658-668,共11页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金(10972151 11272227 11572212) 江苏省普通高校研究生科研创新计划(CXZZ11_0949)资助
关键词 分数阶Birkhoff系统 NOETHER对称性 分数阶守恒量 Riesz分数阶导数 fractional Birkhoffian system Noether symmetry fractional conserved quantity Riesz fractional derivative
  • 相关文献

二级参考文献82

  • 1FU JingLi1,CHEN LiQun2 & CHEN BenYong3 1 Institute of Mathematical Physics,Zhejiang Sci-Tech University,Hangzhou 310018,China,2 Department of Mechanics,Shanghai University,Shanghai 200072,China,3 Faculty of Mechanical-Engineering & Automation,Zhejiang Sci-Tech University,Hangzhou 310018,China.Noether-type theory for discrete mechanico-electrical dynamical systems with nonregular lattices[J].Science China(Physics,Mechanics & Astronomy),2010,53(9):1687-1698. 被引量:9
  • 2FU JingLi1, CHEN LiQun2 & CHEN BenYong3 1 Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China,2 Department of Mechanics, Shanghai University, Shanghai 200072, China,3 Faculty of Mechanical-Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China.Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices[J].Science China(Physics,Mechanics & Astronomy),2010,53(3):545-554. 被引量:11
  • 3Noether A E 1918 Math. Phys. 2 235.
  • 4Bahar L Y and Kwatny H G 1987 Int. J. Non-Linear Mech. 22 125.
  • 5Lutzky M 1979 J. Phys. A: Math. Gen. 12 973.
  • 6Mei F X 2000 J. Beijing Inst. Technol. 9 120.
  • 7Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese).
  • 8Luo S K, Zhang Y F, et al. 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese).
  • 9Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology) (in Chinese).
  • 10Cai J L 2008 Chin. Phys. Lett. 25 1523.

共引文献78

同被引文献15

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部