摘要
作者针对BP神经网络结构设计中存在的问题,提出利用灵敏度分析方法对BP神经网络预测模型进行优化。通过BP算法与参数灵敏度分析的结合,寻找网络输入属性与输出属性之间的影响因子;在保证精度的前提下优选网络输入属性,简化网络结构,以增强网络的泛化能力,减少人为主观因素对网络设计的影响。最后以海洋油气资源预测为例,结合实测资料建立BP神经网络预测模型并进行了优化及预测精度评价,表明优化后的模型既能有效提高油气资源预测结果的稳定性,又不损失预测精度。
To resolve problems existing in the backpropagation (BP) neural network structure design, we used the sensitivity analysis method to optimize the BP neural network prediction model. First, we investigated the impact factors of the input and output attributes of the network by combining the BP algorithm and parameter sensitivity analysis. Then, based on an accurate premise, we optimized the input attributes of the BP network and simplified the model network structure to improve the network’s generalization ability and to greatly reduce the subjective choice of the structural parameters. Lastly, taking ocean oil and gas resources prediction as an example, we estab-lished the BP neural network prediction model using the measured data, and conducted a sensitivity analysis and prediction accuracy evaluation. The results indicate that the optimized model can effectively improve the stability of the prediction results with no loss in prediction accuracy.
出处
《海洋科学》
CAS
CSCD
北大核心
2016年第5期103-108,共6页
Marine Sciences
基金
山东省自然科学基金项目(ZR2014DQ008)
中国石油科技创新基金项目(2015D-5006-0302)
中央高校基本科研业务费专项基金(16CX02031A)~~
关键词
BP神经网络
网络结构设计
灵敏度分析
模型优化
BP neural network
network structure design
sensitivity analysis
model optimization