1Chen HW, Leonard DA, Fischer RT, Trzaskos JM. A mammalian mutant cell lacking detectable lanosterol 14 alpha-methyl demethylase activity. J Biol Chem 1988; 263:1248-1254.
2Leonard DA, Kotarski MA, Tessiatore JE, Favata MF, Trzaskos JM. Post-transcriptional regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by 3 beta-hydroxy-lanost-8-en-32-al, an intermediate in the conversion of lanosterol to cholesterol. Arch Biochem Biophys 1994; 310:152-157.
3Song BL, Javitt NB, DeBose-Boyd RA. Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol. Cell Metabolism 2005; 1:179-189.
4Gaylor JL. Membrane-bound enzymes of cholesterol synthesis from Lanosterol. Biochem Biophys Res Commun 2002; 292:1139- 1146.
5Williams MT, Gaylor JL, Morris HP. Investigation of the ratedetermining microsomal reaction of cholesterol biosynthesis from lanosterol in Morris hepatomas and liver. CancerRes 1977; 37:1377-1383.
6Xu F, Rychnovsky SD, Belani JD, et al. Dual roles for cholesterol in mammalian cells. Proc Natl Acad Sci USA 2005; 102:14551- 14556.
7Nguyen AD, McDonald JG, Bruick RK, DeBose-Boyd RA. Hypoxia stimulates degradation of 3-hydroxy-3-methylglutaryl- coenzyme A reductase through accumulation of lanosterol and hypoxia-inducible factor-mediated induction of insigs. J Biol Chem 2007; 282:27436-27446.
8Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399:271-275.
9Epstein AC, Gleadle JM, McNeill LA, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001; 107:43-54.
10Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001; 294:1337-1340.