期刊文献+

基于Spark的大规模网络流量准实时分类方法 被引量:5

Quasi-realtime Classification Method for Large-Scale Network Traffic Based on Spark
原文传递
导出
摘要 大数据时代催生了互联网流量的指数级增长,为了有效地管控网络资源,提高网络安全性,需要对网络流量进行快速、准确的分类,这就对流量分类技术的实时性提出了更高的要求。目前,国内外的网络流量分类研究大多是在单机环境下进行的,计算资源有限,难以应对高速网络中的(准)实时流量分类任务。本文在充分借鉴已有研究成果的基础上,吸收当前最新的思想和技术,基于Spark平台,有机结合其流处理框架Spark Streaming与机器学习算法库MLlib,提出一种大规模网络流量准实时分类方法。实验结果表明,该方法在保证高分类准确率的同时,也具有很好的实时分类能力,可以满足实际网络中流量分类任务的实时性需求。 In big data era, the internet traffic presents an exponential growth. In order to effectively control network resources and improve network security, internet traffic should be classified quickly and accurately, which leads to a higher requirement for real time performance of the traffic classification technology. At present, the classification of network traffic were carried out in the stand-alone environment for most of researches, so the computing resources were too limited to respond to real-time or quasi-realtime classification of internet traffic in the high-speed network. In this paper, with reference to the existing research results and the latest theories and technologies, based on the Spark platform, combining the flow processing framework Spark Streaming with machine learning algorithm library MLlib, a quasi-realtime classification method of large scale network traffic was proposed. The experimental result showed that the proposed method guarantees high classification accuracy, and it has a good capacity of real-time classification, which meets the real-time requirements of the traffic classification in real network.
出处 《科研信息化技术与应用》 2016年第2期25-34,共10页 E-science Technology & Application
关键词 SPARK 流量分类 大规模 准实时 机器学习 Spark traffic classification large-scale quasi-realtime machine learning
  • 相关文献

参考文献18

  • 1Callado A, Kamienski C. A survey on internet traffic identification[J]. IEEE Communications Surveys and Tutorials, 2009, 11(3): 37-52.
  • 2Nguyen T T T, Armitage G. A survey of techniques for internet traffic classification using machine learning[J]. IEEE Communications Surveys and Tutorials, 2008, 10(4): 56-76.
  • 3柏骏,夏靖波,吴吉祥,任高明,赵小欢.实时网络流量分类研究综述[J].计算机科学,2013,40(9):8-15. 被引量:14
  • 4Pentreath N, Machine Learning with Spark[M]. [S.1.]: Packt Publishing, 2014.
  • 5M Zaharia, Das T, Li H, et al. Discretized streams: fault- tolerant streaming computation at scale[C]. The 24th ACM Symposium on Operating Systems Principles, Farmington, PA, 2013, 423-438.
  • 6SUN Mei-feng CHEN Jing-tao.Research of the traffic characteristics for the real time online traffic classification[J].The Journal of China Universities of Posts and Telecommunications,2011,18(3):92-98. 被引量:5
  • 7Li Jun, Zhang Shunyi, Lu Yanqing, et al. Real-time P2P traffic identificafion[C]. IEEE Global Telecommunications Conference, New Orleans, LA, 2008, 2474-2478.
  • 8Li Zhu, Yuan Ruixi, Guan Xiaohong. Traffic classification- towards accurate real time network applications[J]. Lecture Notes in Computer Science, 2007, 4553: 67-76.
  • 9Li W, Abdin K, Dann R, et al. Approaching real-time network traffic classification, RR-06-12[R]. London: Queen Mary University of London, 2006.
  • 10Tavallaee M, Lu W, Ghorbani A A. Online classification of network flows[C]. The 7th Communication Networks and Services Research Conference, Moncton, NB, 2009, 78-85.

二级参考文献80

  • 1MADI-IUKAR A, WILLIAMSON C. A longitudinal study of P2P traffic classification[ C]//Proc of the 14th IEEE Int'l Symposium on Modeling, Analysis, and Simulation. 2006.
  • 2CALLADO A, KAMIENSKI C, SZABO G, et al. A survey on internet traffic identification[ J]. IEEE Communications Surveys & Tutorials,2009,11 ( 3 ) : 37- 52.
  • 3NGUYEN T, ARMITAGE G. A survey of techniques for Intemet traffic using machine learning[ J]. IEEE Communications Surveys & Tutorials, 2008,10 (4) : 56- 76.
  • 4ROUGHAN M, SEN S, SPATSCHECK O, et al. Class-of-service mapping for QoS: a statistical signature-based approach to IP traffic classification[ C ]//Proc of ACM/SIGCOMM Internet Measurement Conference (IMC). 2004.
  • 5MOORE A W, ZUEV D. Internet traffic classification using Bayesian analysis techniques [ C ]//Proc of ACM International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS). 2005.
  • 6AULD T, MOORE A W, GULL S F. Bayesian neural networks for Intemet traffic classification[ J]. IEEE Trans on Neural Networks, 2007,18( 1 ) :223-239.
  • 7ZANDER S, NGUYEN T, ARMITAGE G. Automated traffic classification and application identification using machine learning [ C ]// Proc of the 30th IEEE Conference on Local Computer Networks. 2005.
  • 8ERMAN J, ARLITI" M, MAHANTI A. Traffic classification using clustering algorithms [ C ]//Proc of S]GCOMM Workshop ora Mining Network Data. New York :ACM Press, 2006:281-286.
  • 9WIITEN I H, FRANK E. Data mining: practical machine learning tools and techniques[ M]. 2nd ed. Amsterdam: Elsevier Inc, 2005.
  • 10ESCHRICH S, KE J, HALL L, et al. Fast accurate fuzzy clustering through data reduction [ J]. IEEE Trans on Fuzzy Syst, 2003,11 (2) : 262-270.

共引文献25

同被引文献25

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部