摘要
镉污染引发的环境和食品安全问题严重威胁人类的身体健康。本文将大豆蛋白负载于魔芋葡甘聚糖凝胶分子骨架上,通过化学交联后,获得结构稳定的大豆蛋白负载魔芋葡甘聚糖吸附材料,并对其结构进行详细的表征,进一步研究其对Cd(Ⅱ)的吸附性能。结果表明,大豆蛋白负载魔芋葡甘聚糖吸附材料具有疏松多孔结构,对Cd(Ⅱ)的吸附速率极快,能在5min内达到吸附平衡,吸附符合准二级反应动力学。大豆蛋白负载魔芋葡甘聚糖对Cd(Ⅱ)脱除效率较高,能达到99.99%。等温吸附结果表明,大豆蛋白负载魔芋葡甘聚糖对Cd(Ⅱ)的吸附符合Langmuir等温吸附方程,最大吸附容量可达52.63mg/g。
Environmental and food safety issues caused by cadmium pollution have seriously threatened human health. In this paper,soy protein was loaded on konjac glucomannan(KGM) gel molecular skeleton and the structurally stable soy protein loaded KGM adsorbent were obtained by chemical cross-linking reaction. A detailed characterization of its structure and further study of its adsorption performance for Cd(Ⅱ) were performed. The results showed that soy protein loaded KGM adsorbent with porous structure showed fast adsorption rate for Cd(Ⅱ). The adsorption equilibrium can be reached within 5 min and the adsorption process followed pseudo-second order kinetics. The removal efficiency can be 99.99%. Isotherm results showed that the soy protein loaded KGM adsorption process was well described by the Langmuir isotherm equation,and the maximum adsorption capacity was 52.63mg/g.
出处
《化工进展》
EI
CAS
CSCD
北大核心
2016年第8期2592-2597,共6页
Chemical Industry and Engineering Progress
基金
国家自然科学基金(21404122
51503124)
广东省自然科学基金(2015A030313822)
广东省大学生科技创新培育专项(pdjh2016a0786)项目