期刊文献+

微电子封装微尺度球栅阵列焊点三点弯曲应力应变分析 被引量:3

STUDY ON ELECTRONIC PACKAGE MINIATURE BALL GRID ARRAY SOLDER JOINTS STRESS AND STRAIN UNDER THREE POINT BENDING
下载PDF
导出
摘要 建立了微尺度球栅阵列焊点三点弯曲应力应变有限元分析模型,在三点弯曲加载条件下,分析了焊点直径、焊点高度、焊盘直径和弯曲加载速率对焊点弯曲应力应变的影响。结果表明:焊点内最大弯曲应力应变随焊点直径、焊点高度和弯曲加载速率的增大而增大、随焊盘直径的增大而减小;在置信度为90%时,焊点直径对焊点内最大弯曲应力具有显著影响,焊点高度和焊盘直径对最大弯曲应力影响不显著,焊点直径对最大弯曲应力产生影响最大、焊盘直径对最大弯曲应力产生影响次之,而焊点高度对最大弯曲应力产生影响最小。 The miniature ball grid array( BGA) solder joint three point bending stress and strain finite element analysis models were set up,and the influences of ball diameter,ball height,pad diameter and bending load speed on the stress and strain of miniature BGA solder joints were analyzed under the three point bending load. The results show that both of the maximum stress and strain of miniature BGA solder joints increase with the increase of the ball diameter,ball height and bending load speed respectively,whereas reduce with the increase of the pad diameter. With 90% confidence,the ball diameter has a certain effect on the maximum bending stress,the ball height and the pad diameter have no significant effect on the maximum stress of miniature BAG solder joint. The ball diameter,pad diameter,ball height affect the maximum stress of miniature BGA solder joints in a descending order.
出处 《机械强度》 CAS CSCD 北大核心 2016年第4期744-748,共5页 Journal of Mechanical Strength
基金 国家自然科学基金(51465012) 广西壮族自治区自然科学基金(2015GXNSFCA139006 2013GXNSFAA019322) 四川省教育厅科研项目(13ZB0052)资助~~
关键词 微电子封装 球栅阵列焊点 三点弯曲加载 有限元分析 应力应变 Microelectronic package Ball grid array solder joint Three point bending load Finite element analysis Stress and strain
  • 相关文献

参考文献4

二级参考文献46

  • 1王凤江,钱乙余,马鑫.纳米压痕法测量Sn-Ag-Cu无铅钎料BGA焊点的力学性能参数[J].金属学报,2005,41(7):775-779. 被引量:24
  • 2Huang Z H, Conway P P, Jung E, Thomson R C, Liu C Q, Loeher T, Minkus M. J Electron Mater, 2006; 36:1761.
  • 3Arzt E. Acta Mater, 1998; 46:5611.
  • 4Zimprich P, Betzwar-Kotas A, Khatibi G, Weiss B, Ipser H. J Mate Sci: Mater Electron, 2008; 19:383.
  • 5Islam M N, Sharif A, Chan Y C. J Electron Mater, 2005; 34:143.
  • 6Chen H T, Wang C Q, Yan C, Huang Y, Tian Y H. J Electron Mater, 2007; 36:33.
  • 7Sharif A, Chan Y C, Islam R A. Mater Sci Eng, 2004; B106:120.
  • 8Wong C K, Pang J H L, Tew J W, Lok B K, Lu H J, Ng F L, Sun Y F. Microelectron Relia, 2008; 48:611.
  • 9Ho C E, Lin Y W, Yang S C, Kao C R, Jiang D S. J Electron Mater, 2006; 35:1017.
  • 10Wiese S, Roellig M, Mueller M, Bennemann S, Petzold M, Wolter K J. Proc 57th Electronic Components and Tech- nology Conf, May 29--June 1, 2007, Reno, Nevada, USA, 2007:548.

共引文献39

同被引文献13

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部