期刊文献+

Combinatorial Dyson-Schwinger equations and inductive data types

Combinatorial Dyson-Schwinger equations and inductive data types
原文传递
导出
摘要 The goal of this contribution is to explain the analogy between combinatorial Dyson-Schwinger equations and inductive data types to a readership of mathematical physicists. The connection relies on an interpretation of combinatorial Dyson-Schwinger equations as fixpoint equations for polynomial functors (established elsewhere by the author, and summarised here), combined with the now-classical fact that polynomial functors provide semantics for inductive types. The paper is expository, and comprises also a brief introduction to type theory. The goal of this contribution is to explain the analogy between combinatorial Dyson-Schwinger equations and inductive data types to a readership of mathematical physicists. The connection relies on an interpretation of combinatorial Dyson-Schwinger equations as fixpoint equations for polynomial functors (established elsewhere by the author, and summarised here), combined with the now-classical fact that polynomial functors provide semantics for inductive types. The paper is expository, and comprises also a brief introduction to type theory.
作者 Joachim Kock
出处 《Frontiers of physics》 SCIE CSCD 2016年第3期179-193,共15页 物理学前沿(英文版)
关键词 Dyson-Schwinger equations type theory inductive types BIALGEBRAS polynomialfunctors Dyson-Schwinger equations, type theory, inductive types, bialgebras, polynomialfunctors
  • 相关文献

参考文献28

  • 1Programming Logic group at Chalmers and Gothen- burg University, Agda, http://wiki.portal.chalmers.se/agda /pmwiki.php.
  • 2C. Bergbauer and D. Kreimer, Hopf algebras in renormaliza- tion theory: locality and Dyson-Schwinger equations from Hochschild cohomology, in: Physics and Number Theory, Voh 10 of IRMA Lect. Math. Theor. :Phys., Ziirich: Eur. Math. Soc., 2006, pp. 133-164, arXiv: hep-th/0506190.
  • 3A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Comm Math. Phys. 199, 203 (1998), arXiv: hep-th/9808042.
  • 4Coq Development Team, INRIA-Rocquencourt. Coq, https://coq.inria.fr/.
  • 5H. Figueroa and J. M. Gracia-Bondia. Combinatorial Hopf algebras in quantum field theory (I): Rev. Math. Phys. 17, 881 (2005), arXiv: hep-th/0408145.
  • 6L. Foissy, Faa di Bruno subalgebras of the Hopf algebra of planartrees from combinatorial Dyson-Schwinger equations, Adv. Math. 218, 136 (2008), arXiv: 0707.1204.
  • 7I. Galvez-Carrillo, J. Kock, and A. Touks, Groupoids and Fak di Bruno formulae for Green functions in bialgebras of trees, Adv. Math. 254, 79 (2014), arXiv: 1207.6404.
  • 8N. Gambino and J. Kock, Polynomial functors and polyno- mial monads, Math. Proc. Cambridge Phil. Soc. 154, 153 (2013), arXiv: 0906.4931.
  • 9J. Kock, Polynomial functors and trees, Int. Math. Res. No- tices 2011, 609 (2011), arXiv: 0807.2874.
  • 10J. Kock, Data types with symmetries and polynomial func- tors over groupoids, in: Proceedings of the 28th Conference on the Mathematical Foundations of Programming Seman- tics (Bath, 2012), Vol. 286 of Electronic Notes in Theoretical Computer Science, 2012, pp. 351-365, arXiv: 1210.0828.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部