期刊文献+

一类带有积分边界条件和变号非线性项的四阶p-Laplacian微分方程解的存在唯一性

Existence and Uniqueness of Solutions for Fourth-Order p-Laplacian Differential Equations with Integral Boundary Conditions and a Sign-Changing Nonlinear Term
下载PDF
导出
摘要 利用上下解方法和Leray-Schauder度理论,研究了四阶p-Laplacian微分方程(Φ(u'''(t)))'-f(t,u(t),u'(t),u″(t),u'''(t))=0,t∈(0,1)在积分边界条件下解的存在性和唯一性.其中f:[0,1]×R^4→R为连续函数,Φ(u)为增同胚且Φ(0)=0,Φ(R)=R,R=(-∞,+∞). By the method of upper and lower solutions and Leary-Schauder degree theory, we investigate the existence and uniqueness of a solutions for the following four order differential equation (Φ(u'''(t)))'-f(t,u(t),u'(t),u″(t),u'''(t))=0,t∈(0,1) subject to the integral boundary conditions, f:[0,1]×R^4→R are continuous and Ф (u) is an increasing homeomorphism with Φ(0)=0,Φ(R)=R,R=(-∞,+∞).
出处 《首都师范大学学报(自然科学版)》 2016年第4期10-16,共7页 Journal of Capital Normal University:Natural Science Edition
基金 "山东协和学院科技计划项目"课题"无穷区间上脉冲微分方程"(编号XHXY201506)
关键词 积分边界条件 上下解 LERAY-SCHAUDER度理论 NAGUMO条件 P-LAPLACIAN intergral boundary conditions, upper and lower solutions, Leray Schauder degree theory, Nagumocondition, p-Laplacian.
  • 相关文献

参考文献6

  • 1Bai Z B. The method of lower and upper solution for a bending of an elastic beam equation[J]. J. Math. Anal. Appl 2000,248 : 195 - 202.
  • 2Bai Z B. The method of lower and upper solutions for some fourth-order boundary value problems[J].Nonlinear Anal 2007,67 : 1704 - 1709.
  • 3Chai G Q. Existence of positive solutions for foiurth-order boundary valne problem with variable parameters[ J]. Nonlinear Anal. 2007,66:870 - 880.
  • 4Feng H Y, Ji D H, Ge W G. Existence and uniqueness of solutions for a fourth-order bound-ary value problem [ J ]. Nonlinear Anal. ,2009,70:3561 - 3566.
  • 5Wang Y Y, Liu G F, Hu Y P. Existence and uniqueness of solutions for a second order differential equation with integral boundary conditions[ J ]. Applied Mathematics and Computation,2010,216:2718 - 2727.
  • 6Bai Z B. Positive solutions of some nonlocal fourth-order boundary value problem [J]. Applied Mathematics and Computation,2010,215:4191 - 4197.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部