摘要
利用上下解方法和Leray-Schauder度理论,研究了四阶p-Laplacian微分方程(Φ(u'''(t)))'-f(t,u(t),u'(t),u″(t),u'''(t))=0,t∈(0,1)在积分边界条件下解的存在性和唯一性.其中f:[0,1]×R^4→R为连续函数,Φ(u)为增同胚且Φ(0)=0,Φ(R)=R,R=(-∞,+∞).
By the method of upper and lower solutions and Leary-Schauder degree theory, we investigate the existence and uniqueness of a solutions for the following four order differential equation (Φ(u'''(t)))'-f(t,u(t),u'(t),u″(t),u'''(t))=0,t∈(0,1) subject to the integral boundary conditions, f:[0,1]×R^4→R are continuous and Ф (u) is an increasing homeomorphism with Φ(0)=0,Φ(R)=R,R=(-∞,+∞).
出处
《首都师范大学学报(自然科学版)》
2016年第4期10-16,共7页
Journal of Capital Normal University:Natural Science Edition
基金
"山东协和学院科技计划项目"课题"无穷区间上脉冲微分方程"(编号XHXY201506)