期刊文献+

Modeling of trap-assisted tunneling on performance of charge trapping memory with consideration of trap position and energy level

Modeling of trap-assisted tunneling on performance of charge trapping memory with consideration of trap position and energy level
下载PDF
导出
摘要 In this work, the trap-assisted tunneling(TAT) mechanism is modeled as a two-step physical process for charge trapping memory(CTM). The influence of the TAT mechanism on CTM performance is investigated in consideration of various trap positions and energy levels. For the simulated CTM structure, simulation results indicate that the positions of oxide traps related to the maximum TAT current contribution shift towards the substrate interface and charge storage layer interface during time evolutions in programming and retention operations, respectively. Lower programming voltage and retention operations under higher temperature are found to be more sensitive to tunneling oxide degradation. In this work, the trap-assisted tunneling(TAT) mechanism is modeled as a two-step physical process for charge trapping memory(CTM). The influence of the TAT mechanism on CTM performance is investigated in consideration of various trap positions and energy levels. For the simulated CTM structure, simulation results indicate that the positions of oxide traps related to the maximum TAT current contribution shift towards the substrate interface and charge storage layer interface during time evolutions in programming and retention operations, respectively. Lower programming voltage and retention operations under higher temperature are found to be more sensitive to tunneling oxide degradation.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第8期447-451,共5页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.61404005,61421005,and 91434201)
关键词 trap assisted tunneling charge trapping memory tunneling oxide degradation trap assisted tunneling, charge trapping memory, tunneling oxide degradation
  • 相关文献

参考文献31

  • 1White M H, Wang Y, Wrazien S J and Zhao Y 2006 Int. J. High Speed Electron. Syst. 16 479.
  • 2Ielmini D, Spinelli A S, Lacaita A L and Modelli A 2001 Microelectron. Eng. 59 189.
  • 3Meena J S, Sze S M, Chand U and Tseng T Y 2014 Nanoscale Res. Lett. 9 1.
  • 4Hou Y, Celano U, Goux L, Liu L, Fantini A, Degraeve R, Youssef A, Xu Z, Cheng Y, Kang J, Jurczak M and Vandervorst W 2016 Appl. Phys. Lett. 108 123106.
  • 5Chen J, Du G and Liu X Y 2015 Chin. Phys. B 24 057702.
  • 6Fan X, Chen H P, Wang Q, Wang Y Q, Lv S L, Liu Y, Song Z T, Feng G M and Liu B 2015 Chin. Phys. Lett. 32 068301.
  • 7Park Y, Choi J, Kang C, Lee C, Shin Y, Choi B, Kim J, Jeon S, Sel J, Park J, Choi K, Yoo T, Sim J and Kim K 2006 Proceedings of International Electron Devices Meeting, pp. 1-4.
  • 8Gilmer D C, Goel N, Park H, Park C, Verma S, Bersuker G, Lysaght P, Tseng H H, Kirsch P D, Saraswat K C and Jammy R 2009 Proceedings of International Electron Devices Meeting, pp. 1-4.
  • 9Liu L F, Pan L Y, Zhang Z G and Xu J 2015 Chin. Phys. Lett. 32 088501.
  • 10Tanaka H, Kido M, Yahashi K, Oomura M, Katsumata R, Kito M, Fukuzumi Y, Sato M, Nagata Y, Matsuoka Y, Iwata Y, Aochi H and Nitayama A 2007 Proceedings of Symposium on VLSI Technology, pp. 14-15.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部