期刊文献+

A Characterization of the Ejiri Torus in S^5

A Characterization of the Ejiri Torus in S^5
原文传递
导出
摘要 We conjecture that a Willmore torus having Willmore functional between 2π2 and 2π2 √3 is either conformally equivalent to the Clifford torus, or conformally equivalent to the Ejiri torus. Ejiri's torus in S5 is the first example of Willmore surface which is not conformally equivalent to any minimal surface in any real space form. Li and Vrancken classified all Willmore surfaces of tensor product in S n by reducing them into elastic curves in S3, and the Ejiri torus appeared as a special example. In this paper, we first prove that among all Willmore tori of tensor product, the Willmore functional of the Ejiri torus in S5 attains the minimum 2π2 √3, which indicates our conjecture holds true for Wilhnore surfaces of tensor product. Then we show that all Willmore tori of tensor product are unstable when the co-dimension is big enough. We also show that the Ejiri torus is unstable even in S5. Moreover, similar to Li and Vrancken, we classify all constrained Wilhnore surfaces of tensor product by reducing them with elastic curves in S3. All constrained Willmore tori obtained this way are also shown to bc unstable when the co-dimension is big enough. We conjecture that a Willmore torus having Willmore functional between 2π2 and 2π2 √3 is either conformally equivalent to the Clifford torus, or conformally equivalent to the Ejiri torus. Ejiri's torus in S5 is the first example of Willmore surface which is not conformally equivalent to any minimal surface in any real space form. Li and Vrancken classified all Willmore surfaces of tensor product in S n by reducing them into elastic curves in S3, and the Ejiri torus appeared as a special example. In this paper, we first prove that among all Willmore tori of tensor product, the Willmore functional of the Ejiri torus in S5 attains the minimum 2π2 √3, which indicates our conjecture holds true for Wilhnore surfaces of tensor product. Then we show that all Willmore tori of tensor product are unstable when the co-dimension is big enough. We also show that the Ejiri torus is unstable even in S5. Moreover, similar to Li and Vrancken, we classify all constrained Wilhnore surfaces of tensor product by reducing them with elastic curves in S3. All constrained Willmore tori obtained this way are also shown to bc unstable when the co-dimension is big enough.
作者 Peng WANG
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第9期1014-1026,共13页 数学学报(英文版)
基金 Supported by NSFC(Grant Nos.11201340 and 11571255) the Fundamental Research Funds for the Central Universities
关键词 Willmore functional Ejiri's Willmore torus surfaces of tensor product elastic curves constrained Willmore surfaces Willmore functional, Ejiri's Willmore torus, surfaces of tensor product, elastic curves,constrained Willmore surfaces
  • 相关文献

参考文献1

二级参考文献1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部