摘要
Thermal batteries(TBs) as primary power sources are widely applied in defense and military affairs, and used in electronic packages and nuclear weapons. The activation time(AT) of TBs restricts the reactive speed of them. Therefore, it is a remarkably important parameter and needs to be studied in detail. In our previous study, the thermal transfer model has already been found during the activation process in TBs. In this work, the experimental TBs were fabricated and tested for validating the model. The error between the average value of test and calculation value from this model is less than 1%. As a result, the thermal transfer function for the activation process in the given TBs[FeSJLiC1-KCI(MgO)/LiSi containing Fe/KC104 heat pellet] is suggested.
Thermal batteries(TBs) as primary power sources are widely applied in defense and military affairs, and used in electronic packages and nuclear weapons. The activation time(AT) of TBs restricts the reactive speed of them. Therefore, it is a remarkably important parameter and needs to be studied in detail. In our previous study, the thermal transfer model has already been found during the activation process in TBs. In this work, the experimental TBs were fabricated and tested for validating the model. The error between the average value of test and calculation value from this model is less than 1%. As a result, the thermal transfer function for the activation process in the given TBs[FeSJLiC1-KCI(MgO)/LiSi containing Fe/KC104 heat pellet] is suggested.
基金
Supported by the National Natural Science Foundation of China(No.21573093).