期刊文献+

基于聚类的多目标遗传算法在类职责分配中的应用 被引量:1

Application of multi-objective genetic algorithms based on clustering in class responsibility assignment
下载PDF
导出
摘要 在面向对象软件设计与实现过程中,类职责分配是其中最重要且复杂的步骤之一,它在很大程度上影响软件质量。为了实现类职责自动分配的目标,从软件内聚与耦合度量的角度出发,建立了类职责分配问题多目标优化模型。在基于快速非支配排序多目标遗传算法基础上,引入凝聚的层次聚类技术,保证群体多样性,避免陷入未成熟收敛。在实验中,通过对类职责自动分配并与一个已有的设计优良的软件系统进行对比,验证了此算法的正确性。另外,通过与单目标遗传算法、SPEA2算法对比表明,本算法在解决类职责分配问题上运行效果最好。 In the process of object-oriented software design and implementation, responsibility assignment problem (CRA) is one of the most important and complicated procedures, which affects the quality of software to a large extent. In order to achieve the goal of CRA automatically, we propose a CRA multi-objective optimization model which is built from the perspective of cohesion and coupling metrics. On the basis of fast non-dominated sorting genetic algorithm, we introduce the agg|omerate hierarchical clustering technology to ensure population diversity and to avoid premature convergence. Experiments on automatical class responsibility assignment verify the correctness of the algorithm, whose results are also compared with an existing well-designed software system. In addition, compared with the single objective genetic algorithm and the SPEA2 algorithm, the proposed algorithm has the best CRA operation effect.
出处 《计算机工程与科学》 CSCD 北大核心 2016年第7期1398-1404,共7页 Computer Engineering & Science
关键词 类职责分配 多目标遗传算法 快速非支配排序 凝聚层次聚类 class responsibility assignment multi-objective genetic algorithms fast non-dominated sorting hierarchical agglomerative clustering
  • 相关文献

参考文献2

二级参考文献20

  • 1邹彤,李宁,孙德宝,李菁.多车场车辆路径问题的遗传算法[J].计算机工程与应用,2004,40(21):82-83. 被引量:32
  • 2向铁元,周青山,李富鹏,汪毅.小生境遗传算法在无功优化中的应用研究[J].中国电机工程学报,2005,25(17):48-51. 被引量:76
  • 3杨丽徙,徐中友,朱向前.基于改进遗传算法的配电网无功优化规划[J].华北电力大学学报(自然科学版),2007,34(1):26-30. 被引量:20
  • 4张敬平,梁志瑞,苏海锋,王建杰.基于改进排挤小生境遗传算法配网无功优化研究[J].继电器,2007,35(10):19-22. 被引量:14
  • 5Das D,Nagi H S,Kothari D P.Novel method for solving radial distribution networks[J],IEE Proceedings,Generation,Transmission and Distribution,1994,141(4):291-298.
  • 6Yjn X,Germay N.A fast genetic algorithm with sharing scheme using cluster analysis methods in multimodal function optimization[C].//Proc Int Conf Artificial Neural Netsand Genetic Algorithms AlbrechtR F,Reeves C R,SteeleEds N C.NewYork.Springer -Vedag,1993:450-457.
  • 7Miller B L,Shaw M J.Genetic algorithms with dynamic niche sharing for multimodal function optimization[C].//Proc 3《'rd》 IEEE Conf Evolutionary Computation.Piscataway,NJ:IEEE Press,1996:786-791.
  • 8Ho W,Ho G T S,Ji P.A hybrid genetic algorithm for the multi-depot vehicle routing problem[J].Engineering Applications of Artificial Intelligence, 2008,21 (4) : 548-557.
  • 9Milabi M, Ghomi S M T F,Jolai F.Efficient stochastic hybrid heuristics for the multi-depot vehicle routing problem[J].Robotics and Computer-Integrated Manufactur- ing, 2010,26(6) : 564-569.
  • 10Yvcenur G N, Demirel N C.A new geometric shape-based genetic clustering algorithm for the multi-depot vehicle routing problem[J].Expert Systems with Applications, 2011,38(9) : 11859-11865.

共引文献17

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部