期刊文献+

基于支持矩阵的频繁集增量更新算法改进研究

Improvement Research about Frequent Itemsets Incremental Updating Algorithm Based on Support Matrix
下载PDF
导出
摘要 针对FUP算法在频繁集增量更新时,剪枝效率低下以及候选集验证速度慢的缺陷,提出了基于支持矩阵的频繁集增量更新的高效挖掘算法—SMFUP算法.该算法不仅采用支持矩阵进行整体剪枝来提高剪枝效率,而且进一步结合频繁2项集矩阵加快候选频繁集的验证速度,从而使算法的增量更新效率大大提高.最后通过实验证明了算法改进的有效性. The efficiency is greatly reduced when the algorithm named FUP is used in incremental updating frequent sets. Because it 's low speed of candidate frequent set validation and pruning. The algorithm named SMFUP based on support matrix is put forward,using for efficiently mining incremental updating frequent item sets. The efficiency of the algorithm is greatly increased,because it is not only used to support matrix to speed up pruning; but also used 2- frequent item sets and support matrix to speed up candidate frequent set validation. Finally,the experiments show that the algorithm has a better performance than the FUP algorithm.
机构地区 阳光学院
出处 《哈尔滨师范大学自然科学学报》 CAS 2016年第2期29-32,共4页 Natural Science Journal of Harbin Normal University
基金 国家自然科学基金项目资助(41501451)
关键词 频繁集 关联规则 FUP 支持矩阵 增量更新 Frequent Itemsets Association Rules FUP Support Matrix Incremental Update
  • 相关文献

参考文献10

  • 1Agrawal R, Imielinaki T, Swami A. Mining Association Rules Between Sets of Items in Large Databases [ C ]. Proc. of ACM SIGMOD Conference on Management of Data. Washington D C, USA: ACM Press, 1993.
  • 2Agrawal R, Srikant R. Fast Algorithms for Mining Associa- tion Rules [C]. Prec. of VLDB ' 94. Santiago, Chile: Is. n. ] , 1994.
  • 3Han Jiawei, Jian Pei, Yiwen Yin. Mining frequent patterns without candidate generation [J]. ACM SIGMOD Record, 2000(2) .
  • 4Han Jiawei,Kamber M.数据挖掘:概念与技术[M].北京:机械工业出版社,2004-06.
  • 5纪怀猛.基于频繁2项集支持矩阵的Apriori改进算法[J].计算机工程,2013,39(11):183-186. 被引量:10
  • 6Cheung D W, Han Jiawei, Ng V, et al. Maintenance of dis- covered association rules in large database: an incremental updating technique [C]. Proceeding of 12th International Conference on Data Engineering, New Orleans, Louisiana, 1996: 106- 114.
  • 7Cheung D, LEE S, Kao B. A general incremental technique for maintaining discovered association rules [ C ]. Proceedings of the 5th International Conference on Database Systems for Advanced Applications, Melbourne, Australia, 1997. 185- 194.
  • 8冯玉才,冯剑琳.关联规则的增量式更新算法[J].软件学报,1998,9(4):301-306. 被引量:227
  • 9牛小飞,刘浩,牛学东,刘秀婷.基于矩阵的关联规则增量更新算法[J].计算机工程与应用,2006,42(21):169-171. 被引量:5
  • 10黄德才,张良燕,龚卫华,刘端阳.一种改进的关联规则增量式更新算法[J].计算机工程,2008,34(10):38-39. 被引量:21

二级参考文献22

  • 1牛小飞,石冰,卢军,吴科.挖掘关联规则的高效ABM算法[J].计算机工程,2004,30(11):118-120. 被引量:16
  • 2朱红蕾,李明.一种高效维护关联规则的增量算法[J].计算机应用研究,2004,21(9):107-109. 被引量:9
  • 3付长贺,赵传立,唐恒永.一种改进的关联规则增量式更新算法[J].沈阳师范大学学报(自然科学版),2006,24(1):51-54. 被引量:2
  • 4刘以安,羊斌.关联规则挖掘中对Apriori算法的一种改进研究[J].计算机应用,2007,27(2):418-420. 被引量:53
  • 5David W Cheung,Jiawei Han,Vincent Ng et al.Maintenance of Discovered Association Rules in Large Database:an Incremental Updating Technique[C].In:Proceeding of 12th International Conference on Data Engineering(ICDE96),New Orleans,Louisana,1996-02:106~114
  • 6Han Jiawei,Kamber M.数据挖掘:概念与技术[M].北京:机械工业出版社,2004-06.
  • 7Cheung David,Han Jiawei,Vincent T N,et al.Maintenance of Discovered Association Rules in Large Databases:An Incremental Updating Technique[C]//Proc.of the 12th Int'l Conf.on Data Engineering.New Orleans.Louisiana,USA:[s.n.],1996.
  • 8Ayan N F.An Efficient Algorithm to Updating Large Itemsets with Early Pruning[C]//Proc.of the 5th Int'l Conf.on KDD'99.San Diego,California,USA:[s.n.],1999.
  • 9Agrawal R, Imielinaki T, Swami A. Mining Association Rules Between Sets of Items in Large Databases[C]//Proc. of ACM SIGMOD Conference on Management of Data. Washington D. C., USA: ACM Press, 1993.
  • 10Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules[C]//Proc. of VLDB’94. Santiago, Chile: [s. n.], 1994.

共引文献259

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部