摘要
We study the properties of spin-orbit coupled and harmonically trapped quasi-two-dimensional Fermi gas with tunable s-wave interaction between the two spin species. We adapt an effective two-channel model which takes the excited states occupation in the strongly confined axial direction into consideration by introducing dressed molecules in the closed channel, and use a Bogoliubovde Gennes(BdG) formalism to go beyond local density approximation. We find that both the in-trap phase structure and density distribution can be significantly modified near a wide Feshbach resonance compared with the single-channel model without the dressed molecules. Our findings will be helpful for the experimental search for the topological superfluid phase in ultracold Fermi gases.
We study the properties of spin-orbit coupled and harmonically trapped quasi-two-dimensional Fermi gas with tunable s-wave interaction between the two spin species. We adapt an effective two-channel model which takes the excited states occupation in the strongly confined axial direction into consideration by introducing dressed molecules in the closed channel, and use a Bogoliubov- de Gennes (BdG) formalism to go beyond local density approximation. We find that both the in-trap phase structure and density distribution can be significantly modified near a wide Feshbach resonance compared with the single-channel model without the dressed molecules. Our findings will be helpful for the experimental search for the topological superfluid phase in ultracold Fermi gases.
基金
supported by the National Key Basic Research Program of China(Grant No.2013CB922000)
the National Natural Science Foundation of China(Grant Nos.11274009,11374283,11434011,11522436 and11522545)
and the Research Funds of Renmin University of China(Grant Nos.10XNL016 and 16XNLQ03)
support from the "Strategic Priority Research Program(B)" of the Chinese Academy of Sciences(Grant No.XDB01030200)