期刊文献+

一种基于语音识别的室内定位方法 被引量:3

NewApproach for Indoor Localization Based on Speech Recognition
下载PDF
导出
摘要 基于位置的服务在生活中扮演着越来越重要的作用,不仅可以为用户提供定位导航服务,而且改变着人们的生活交流方式.现有的室内定位系统大都是利用Wi-Fi接收信号强度(RSS)进行指纹匹配,以坐标方式表示位置,存在着定位精度低,不能直观表示室内位置关系等诸多不足.针对这些不足,本文提出一种基于语音识别的室内定位方法-HspotNavi.当用户静止时,利用语音识别和条件随机场解析周围声音中的位置语义,并将其与用户行走过程中采集的WiFi指纹序列、惯导数据一起打包成路径信息,上传至服务器.当其他用户请求定位服务时,HspotNavi根据语义获取预存路径,利用Wi Fi指纹序列的错位匹配提供定位服务. Service based on localization is one of the most important contexts for human activities, and it can not only provide a service to locate or navigate, but changes the way of our life and communication. In recent years, the Wi-Fi fingerprint ( WF ) technique has been actively studied, but in the most of existing WF-based system, the RSS is directly adopted as fingerprint, which may cause a significant performance degradation. Moreover, the location is generally showed in the coordinate system, which can not intuitively reflect the relationship of indoor position. To tackle the aforementioned problems, this paper presents a speech recognition-based localization solution--HspotNavi. The proposed solution extracts the semantics feature for space partition via Automatic Speech Recogni- tion and CRFs, and samples WiFi and IMU sensors as guiders walk along pathways to destinations. HspotNavi automatically processes all sensor data and packs them into a tracjectory, which can be shared via a cloud server. When other users send a localization requirement, HspotNavi adopts dislocations matching of the coincident Wi-Fi fingerprint sequence between prestored tracjectory and current tracjectory to provide localization service.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第8期1883-1888,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61272466 61303233)资助 河北省自然科学基金项目(F2014203062)资助
关键词 室内定位 语音识别 条件随机场 接收信号强度 indoor localization speech recognition CRFs ( Conditional random fields) RSS
  • 相关文献

参考文献1

二级参考文献18

  • 1王娟,慈林林,姚康泽.特征选择方法综述[J].计算机工程与科学,2005,27(12):68-71. 被引量:64
  • 2周俊生,戴新宇,尹存燕,陈家骏.基于层叠条件随机场模型的中文机构名自动识别[J].电子学报,2006,34(5):804-809. 被引量:112
  • 3Grishman R,Sundheim B.Message Understanding Conference-6:A Brief History[C]//Proceedings of the 16th International Conference on Computational Linguistics.1996:466-471.
  • 4Beth M Sundheim.Named entity task definition,version 2.1[C]//Proceedings of the Sixth Message Understanding Conference,1995:219-332.
  • 5MUC[EB/OL]:http://www-nlpir.nist.gov/related_projects/muc/.
  • 6命名实体识别评测组.2004年命名实体评测大纲[OL].http://www.863data.com.cn.
  • 7沈达阳,孙茂松,黄昌宁.中国地名的自动辨识[J].计算机语言发展与应用,1995(10):68-76.
  • 8Manoranjan Dash,Huan.Selection for Classification[J].Intelligent Data Analysis,1997,1(3):131-156.
  • 9Cho H C,Okazaki N,Miwa M,et al.Named entity recognition with multiple segment representations[J].Information Processing&Management,2013,49(4):954-965.
  • 10Miao Y,Yajuan L,Qun L,et al.Chinese Named Entity Recognition and Disambiguation Based on Wikipedia[M]//Natural Language Processing and Chinese Computing.Springer Berlin Heidelberg,2012:272-283.

共引文献64

同被引文献16

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部