期刊文献+

具有传感器增益退化的不确定系统融合估计器 被引量:22

Fusion estimator with stochastic sensor gain degradation for uncertain systems
原文传递
导出
摘要 研究具有传感器增益退化、模型不确定性的多传感器融合估计问题,其中传感器增益退化现象描述为统计特性已知的随机变量,模型的不确定性描述为系统矩阵受到随机扰动.设计一种局部无偏估计器结构,并建立以局部估计器增益为决策变量、以有限时域下融合估计误差为代价函数的优化问题.在给出标量融合权重时,考虑到求得最优的局部估计器增益的解析形式较为困难,通过最小化代价函数的上界得到一组次优的局部估计器增益.最后通过算例仿真表明了所设计融合估计器的有效性. The fusion estimation problem is investigated for a class of uncertain stochastic systems with stochastic sensor gain degradation. The sensor gain degradation is described by random variable whose probability is assumed to be known.The model's uncertainty is described by stochastic parameter perturbations considered in the system matrix. A kind of local unbiased estimator structure is proposed, and an optimization problem which sets the local filter gains and the finite horizon estimation error to be the decision variables and the cost function, respectively, is established. Then for the given scalar fusion weights, obtaining the closed form of the optimal consensus filter gains is a challenging problem, so a set of sub-optimal local filter gains are computed based on minimizing an upper bound of the cost function. Finally, simulation example is given to illustrate the effectiveness of the proposed approach.
出处 《控制与决策》 EI CSCD 北大核心 2016年第8期1413-1418,共6页 Control and Decision
基金 国家自然科学基金项目(61473306)
关键词 传感器增益退化 模型不确定性 局部无偏估计器 标量融合权重 分布式融合估计 sensor gain degradation model's uncertainty local unbiased estimator scalar fusion weights decentralized fusion estimator
  • 相关文献

参考文献16

  • 1葛泉波,李文斌,孙若愚,徐姿.基于EKF的集中式融合估计研究[J].自动化学报,2013,39(6):816-825. 被引量:44
  • 2冯肖亮,文成林,刘伟峰,李晓芳,徐立中.基于多传感器的序贯式融合有限域H∞滤波方法[J].自动化学报,2013,39(9):1523-1532. 被引量:16
  • 3岳元龙,左信,罗雄麟.提高测量可靠性的多传感器数据融合有偏估计方法[J].自动化学报,2014,40(9):1843-1852. 被引量:43
  • 4Suh Y S, Nguyen V H, Ro Y S. Modified Kalman filter for networked monitoring systerms employing a send-on-detla method[J]. Automatica, 2007, 43(2): 332-338.
  • 5Luo Y, Zhu Y, Luo D, et al. Globally optimal multisensor distributed random parameter matrices Kalman filtering fusion with applications[J]. Sensors, 2008, 8(12): 8086-8103.
  • 6陈博,俞立,张文安.具有测量数据丢失的离散不确定时滞系统鲁棒Kalman滤波[J].自动化学报,2011,37(1):123-128. 被引量:13
  • 7Chen B, Yu L, Zhang W A. Robust Kalman filtering for uncertain state delay systems with random observation delays and missing measurements[J]. IET Control Theory and Applications, 2011, 5(17): 1945-1954.
  • 8Gershon E, Shaked U, Yaesh I. Control and estimation of state-multiplicative linear systems[M]. London: Springer-Verlag, 2005.
  • 9Shen B, Wang Z D, Hung Y S. Distributed H∞-consensus filtering in sensor networks with multiple missing measurements: The finite-horizon case[J]. Automatica, 2010, 46(10): 1682-1688.
  • 10Ding D, Wang Z D, Dong H, et al. Distributed H∞ state estimation with stochastic parameters and nonlinearities through sensor networks: The finite-horizon case[J]. Automatica, 2012, 48(8): 1575-1585.

二级参考文献30

共引文献99

同被引文献106

引证文献22

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部