期刊文献+

基于分步降维HOG-LBP特征的行人头部分类算法

Pedestrian head classification algorithm with two-step dimension reduction HOG- LBP feature
下载PDF
导出
摘要 传统的基于PCA-HOG特征的行人头部分类算法存在降维后的子空间鉴别性不足的问题.为此,提出一种基于分步降维HOG-LBP特征的行人头部分类算法.首先,利用样本类别标签构建2类样本的HOG特征集合,在这2类特征集合中分别执行PCA降维,然后将所得的特征与LBP纹理特征进行级联得到最终的头部描述算子,最后通过训练SVM分类器对实际样本集进行分类.实验结果表明,与传统PCA降维方法相比,该方法可有效提高行人头部的分类性能. Traditional pedestrian head classification algorithm based on PCA-HOG feature has the problem of degradation of the discrimination in the subspace.In order to handle this problem,the pedestrian head classification is completed based on the proposed two-step dimension reduction HOG- LBP feature.Firstly,two category of HOG sample set are obtained according to the sample labels.The PCA algorithm is carried out on each sample set step by step.Then the LBP texture features are combined with the dimension reduced HOG feature to form the final head descriptor.Lastly,experiments were performed by SVM classifier on practical test samples,and the experimental results show that,comparing with the traditional PCA algorithm,the presented HOG-LBP features can effectively improve the classification performance of pedestrian head.
作者 李玲 王江涛
出处 《高师理科学刊》 2016年第7期29-33,共5页 Journal of Science of Teachers'College and University
基金 国家自然科学基金资助项目(61203272) 安徽省高校优秀青年人才支持计划重点项目(gxyq ZD2016113) 安徽省自然科学基金项目(1508085MF116) 淮北师范大学教学研究项目(jy15128)
关键词 HOG LBP PCA 头部检测 HOG LBP PCA head detection
  • 相关文献

参考文献10

二级参考文献48

  • 1李豪杰,林守勋,张勇东.基于视频的人体运动捕捉综述[J].计算机辅助设计与图形学学报,2006,18(11):1645-1651. 被引量:31
  • 2Cui Y, Weng J J. Hand segmentation using learning- based prediction and verification for hand sign language [ C]//Proc of ICI2V'96. USA:San Francisco, 1996 : 88 - 93.
  • 3Cui Y, Swets D L, Weng J J. Learning based hand sign language using SHOSLIF - M [ C ]// Proc of ICCV'96. USA: San Francisco, 1996 : 61 - 636.
  • 4Grobel K, Assan M. Isolated sign language recognition using hidden markov models[ C]//Proc. of the International Conference of System, Man and Cybernetics. USA: Orlando, 1996:162- 167.
  • 5Wen Gao, Ma Jiyong, Wu Jiangqin, et al. Lange vocabulary sign language recognition based onHMM/ANN/DP[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2000,14 (5) : 587 - 602.
  • 6Woods Richard E,Eddins Steven L.数字图像处理[M].阮秋琦,译.北京:电子工业出版社,2003.
  • 7章毓晋.图像工程:上册-图像处理和分析[M].北京:清华大学出版社,2001.
  • 8LI L, LEUNG M K H. Unsupervised learning of human perspective context using ME-DT for efficient human detection in surveillance [ C]// Proceedings of the 2008 IEEE International Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2008:1 -8.
  • 9WOJEK C, WALK S, SCHIELE B. Multi-cue onboard pedestrian detection[ C]// Proceedings of the 2009 1EEE International Confer- ence on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2009:794 -801.
  • 10XU R, ZI-1ANG B, YE Q, et al. Cascade L1 -norm classifier for pe- destrian detection[ C]// Proceedings of the 2010 IEEE International Conference on Computer Vision and Pattern Recognition. Washing- ton, DC: IEEE Computer Society, 2010:89-96.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部