期刊文献+

基于控制向量参数化和迭代凸规划的无人机编队飞行的建立 被引量:1

Establishment of UAV Formation Flight Using Control Vector Parameterization and Sequential Convex Programming
下载PDF
导出
摘要 多个无人机组成的编队飞行可以作为很多应用中现有技术的一种高效、低成本的替代方案。研究了能满足最终编队队形约束的且能量最优的无人机编队飞行的建立。首先,将编队建立问题建模成一个受非线性动力学约束的能量最优控制问题。其次,采用直接法来求解该最优控制问题。在采用的直接法中,利用控制向量参数化方法将原始问题转化成一系列待求解的凸优化问题;然后,运用迭代凸规划(SCP)技术求得其最优解。在求解过程中,SCP迭代的每一步本质上都是一个二次型规划问题;由于该规划问题的约束是线性约束,因此可以高效地进行求解。最后,将提出的方法运用到3个无人机的V型编队建立中,并使用了免费的开源求解器CVX进行求解。与MATLAB中提供的全局优化技术相比,文中提出的算法能够快速地收敛到全局最小值。 Formation flight of multiple Unmanned Aerial Vehicles ( UAVs) could provide an effective, efficient yet cost reduction alternative to existing technologies of various applications. This paper addresses the energy-optimal establishment of UAV formation flight that shall satisfy final configuration constraints. First, the problem of formation establishment is formulated as an energy-optimal control problem which is subject to the nonlinear dy-namics constraints. Then, the optimal control problem is solved using a direct method. In this direct method the o-riginal problem is transcribed into a sequence of convex optimization problems via the control vector parameterization approach. After that, the sequential convex programming ( SCP ) technology is employed to derive the optimal solution. Essentially, each instance of SCP is a quadratic programming problem subject to linear con-straints that can be solved very efficiently. In the end, the proposed method is applied to the establishment of V for-mation for three UAVs, where the free open source CVX is exploited. By comparison with the global optimization technique provided in MATLAB, the solution converges very fast to the global minimum.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2016年第4期607-613,共7页 Journal of Northwestern Polytechnical University
关键词 无人机编队飞行 最优控制 控制向量参数化 迭代凸规划 convex optimization, cost reduction, MATLAB, parameterization, unmanned aerial vehicles ( UAVs), formation flight, optimal control, control vector parameterization, sequential convex programming
  • 相关文献

参考文献12

  • 1Burkle A, Segor F, Kollmann M. Towards Autonomous Micro UAV Swarms[J]. Journal of Intelligent Robotic Systems, 2011, 61(1): 339-353.
  • 2Navaravong L, Kan Z, Shea J M, et al. Formation Reconfiguration for Mobile Robots with Network Connectivity Constraints[J]. IEEE Trans on Network, 2012, 26(4): 18-24.
  • 3Raffard R L, Tomlin C L, Boyd S P. Distributed Optimization for Cooperative Agents: Application to Formation Flight[C]//Proceedings of 43rd IEEE Conference on Decision and Control, 2004: 2453-2459.
  • 4Betts J T. Survey of Numerical Methods for Trajectory Optimization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193-207.
  • 5Conway B A. A Survey of Methods Available for the Numerical Optimization of Continuous Dynamic Systems[J]. Journal of Optimization Theory and Applications, 2012, 152(2): 271-306.
  • 6Teo K L, Goh C, Wong K. A Unified Computational Approach to Optimal Control Problems[M]. Longman Scientific and Technology, Essex, 1991.
  • 7Boyd S, Vandenberghe L. Convex Optimization[M]. Cambridge University Press, New York, 2009.
  • 8Mattingley J, Boyd S. Cvxgen: a Code Generator for Embedded Convex Optimization[J]. Optimization and Engineering, 2012, 13(1): 1-27.
  • 9白瑞光,孙鑫,陈秋双,全雄文.基于Gauss伪谱法的多UAV协同航迹规划[J].宇航学报,2014,35(9):1022-1029. 被引量:26
  • 10Chachuat B. Nonlinear and Dynamic Optimization: from Theory to Practice[R]. Technical Report, 2007.

二级参考文献16

  • 1王斯福,刘永才,关世义,强文义,张克.伴飞诱饵支援条件下无人飞行器协同作战效能研究[J].宇航学报,2007,28(2):498-502. 被引量:18
  • 2Fan X,Yan H,Zhang G P.A UAV path planning method based on threat sources[C].The 3rd Internal Conference on Environmental Engineering and Technology,Dubai,UAE,August 4-5,2012.
  • 3McLain T W,Beard R W.Cooperative rendezvous of multiple unmanned air vehicles[C].The AIAA Guidance,Navigation and Control Conference,Denver,USA,August 14-17,2000.
  • 4McLain T W,Chandler P.Cooperative control of UAV rendezvous[C].The 27th American Control Conference,Arlington,USA,June 25-27,2001.
  • 5McLain T W,Beard R W.Coordination variables,coordination functions,and cooperative timing missions[J].Journal of Guidance,Control,and Dynamics,2005,28(1):150-161.
  • 6Guo W Q,Hou Y Y.Optimal coordination of multi-task allocation and path planning for UAVs using dynamic Bayesian network[C].The 21st Chinese Control and Decision Conference,Guilin,China,June 17-19,2009.
  • 7Iman K,Behrooz M,Alireza N.Optimal three dimensional terrain following/terrain avoidance for aircraft using direct transcription method[C].The 19th Mediterranean Conference on Control and Automation,Corfu,Greece,June20-23,2011.
  • 8Zhang L M,Gao H T,Chen Z Q,et al.Multi-objective global optimal parafoil homing trajectory optimization via Gauss pseudospectral method[J].Nonlinear Dynamics,2013,72(1):1-8.
  • 9Vaddi S S,Menon P K,Sweriduk G D.Multistepping approach to finite-interval missile integrated control[J].Journal of Guidance,Control,and Dynamics,2006,29 (4):1015-1019.
  • 10Huntington G T,Benson D,Rao A V.A comparison of accuracy and computational efficiency of three pseudospectral methods[C].The AIAA Guidance,Navigation and Control Conference,Hilton Head,USA,August 20-23,2007.

共引文献25

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部