期刊文献+

尺度自适应结构输出目标跟踪算法 被引量:1

Structured Output Target Tracking Algorithm with Scale Adaptation
下载PDF
导出
摘要 针对目标尺度明显变化时采用固定尺度的结构输出目标跟踪算法容易出现跟踪失败的问题,提出一种改进的尺度自适应目标跟踪算法。新算法在传统结构输出跟踪算法基础上,将目标运动信息引入候选样本采集过程,通过自举滤波器的状态转移模型预测目标的当前位置和尺度,生成一组多尺度候选样本集,避免了固定尺度的密集均匀采样,实现尺度自适应的同时降低了算法的计算量。实验结果表明,所提算法在目标发生明显尺度变化、部分遮挡以及旋转等情况下具有较高的鲁棒性,且实时性相比于传统结构输出跟踪算法明显提高。 A new multi-scale tracking algorithm is proposed to solve the problem that the structured output tracking algorithm with fixed scale often leads to failure when the size of the target change obviously. Based on the original structured output tracking algorithm, the proposed algorithm introduces the velocity information of the moving target into the sampling process of candidate samples. A state transition model of the bootstrap filter is used to estimate the current position and scale, generate a set of multi-scale samples and avoid dense sampling with fixed scale, this al-low to realize scale adaptation and reduce the calculation of algorithm. Experiments show that the proposed algorithm has strong robustness when the scale of target changed obviously or target is partially occluded, and achieve higher real-time performance than original structured output tracking algorithm.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2016年第4期677-683,共7页 Journal of Northwestern Polytechnical University
基金 航空科学基金(20131953022) 西北工业大学研究生创业种子基金(Z2015120)资助
关键词 实时控制 目标跟踪 尺度自适应 结构支持向量机 自举滤波器 real-time control target tracking scale adaptation structured SVM bootstrap filter
  • 相关文献

参考文献10

  • 1Matteo Munaro, Emanuele Menegatti. Fast RGB-D People Tracking for Service Robots[J]. Autonomous Robots, 2014, 37(3): 227-242.
  • 2Babenko B, Yang M H, Belongie S. Robust Object Tracking with Online Multiple Instance Learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33: 1619-1632.
  • 3Kalal Z, Mikolajczyk K, Matas J. Tracking-Learning-Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422.
  • 4Zhang K, Zhang L, Yang M H. Real-Time Compressive Tracking[C]//2012 ECCV, 2012: 864-877.
  • 5Hare S, Saffari A, Torr P H S. Struck: Structured Output Tracking with Kernels[C]//2011 IEEE International Conference on Computer Vision, 2011: 263-270.
  • 6Platt J. Fast Training of Support Vector Machines Using Sequential Minimal Optimization[M]. Advances in Kernel Methods-Support Vector Learning, 1999: 185-208.
  • 7Wu Y, Lim J, Yang M H. Online Object tracking: A Benchmark[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013: 2411-2418.
  • 8Smeulders A W M, Chu D M, Cucchiara R, et al. Visual Tracking: An Experimental Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442-1468.
  • 9马伟,陈建国,张毛磊.基于尺度自适应和跟踪框自转的视频目标跟踪[J].清华大学学报(自然科学版),2012,52(1):92-95. 被引量:8
  • 10Ma Wei, Chen Jianguo, Zhang Maolei. Video Target Tracking Based on Scale Adaptation and Tracking Box Rotations[J]. Journal of Tsinghua University, 2012, 52(1): 92-95 (in Chinese).

二级参考文献11

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift [C]// IEEE International Proceeding on Computer Vision and Pattern Recognition. Stoughton: Printing House, 2000, (2) :142- 149.
  • 3Wang J O, Yagi Y. Integrating color and shape texture features for adaptive real-time object tracking [J]. IEEE Transactions on Image Processing, 2008, 17(2): 235- 240.
  • 4Zhou H, Yuan Y, Shi C. Object tracking using shift features and mean shift [J]. Computer Vision and Image Understanding, 2009, 113(3) : 345-352.
  • 5Deguchi K, Kawanaka O, Okatani T. Object tracking by the Mean Shift of regional color distribution combined with the particle-filter algorithm [C]// International Conference on Pattern Recognition. Cambridge, UK: IEEE Press, 2004.- 506 - 509.
  • 6Yang C J, Duraiswami R, and Davis L. Efficient spatial feature tracking via a new similarity measure [C]// Proceeding of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE Computer Society, 2005:176 - 183.
  • 7Collins R T. Mean-Shift blob tracking through scale space [C]// IEEE International Conference on Computer Vision and Pattern Recognition. Madison, WI, USA.- IEEE Computer Society, 2003:234-240.
  • 8Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5) : 564 - 577.
  • 9Atern H, Efros B. Adaptive color space switching for tracking under varying illumination [J]. Image and Vision Computing, 2005, 23: 353-364.
  • 10Li Y H, Pang Y G, Li Z X, et al. An Intelligent tracking technology based on Kalman and Mean Shift algorithm[C]// 2010 Second International Conference on Computer Modeling and Simulation. Piscataway, NJ: IEEE Press, 2010: 107- 109.

共引文献7

同被引文献6

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部