期刊文献+

基于非对称场流分离技术的水环境腐殖酸聚集特性研究 被引量:3

The study of aggregation properties of aqueous humic acid based on asymmetric flow field-flow fractionation
原文传递
导出
摘要 腐殖酸的聚集特性是影响其去除率及与其它污染物相互作用的重要因素,本文采用非对称场流分离技术对腐殖酸组分进行分离,配合示差折光检测器及多角度激光光散射器,对腐殖酸分子量的分布规律进行研究,探讨了水环境的化学条件对腐殖酸荷电状态和聚集状态的影响规律.结果表明,腐殖酸具有自我凝聚的特性;在p H较低和溶液离子强度较高时,腐殖酸胶粒的Zeta电位绝对值减小而分子量增大,腐殖酸胶粒聚集程度增大;随腐殖酸浓度增大,腐殖酸胶粒的Zeta电位绝对值减小,腐殖酸分子发生聚集而使胶粒分子量增大.当离子强度达到0.08mol·L-1,或浓度达到15 mg·L-1时,腐殖酸分子不仅靠氢键聚集在一起,还可能发生分子间的缔合. Aggregation properties of aqueous humic acid strongly influence its removal efficiency and the interaction with other pollutants.In this study,asymmetric field flow fractionation technique was used to isolate humic fractions,coupled with a differential refractive index detector and a multi-angle laser light scattering device for studying the distribution of molecular weight of humic acid.Then,the effect of chemical conditions on the states of the charge and aggregation of the humic acids(HAs) was discussed.The results show that the HAs had the property of self-flocculation.With the lower p H and the relatively higher ionic strength,the absolute values of Zeta potential for the HA colloidal particles decrease while the molecular weight increased,thereby the polymerization degree increased.Moreover,with the increasing of the HA concentration and subsequently the decrease of the absolute values of Zeta potential,the molecular weight of the HA colloidal particles increased due to the micelle aggregation.When the ionic strength is up to 0.08 mol·L-1,or the concentration is greater than 15 mg·L-1,there will be not only hydrogen bonds,but also intermolecular association between humic acid molecules.
出处 《环境科学学报》 CAS CSCD 北大核心 2016年第8期2899-2904,共6页 Acta Scientiae Circumstantiae
基金 国家水体污染控制与治理科技重大专项(No.2014ZX07203-009-02)~~
关键词 腐殖酸 聚集 分子量 非对称场流分离色谱 humic acid aggregation molecular weight asymmetric flow field-flow fractionation
  • 相关文献

参考文献23

  • 1Abouleish Mohamed Y Z, Wells Martha J M. 2015. Trihalomethane formation potential of aquatic and terrestrial fulvic and humic acids:Sorption on activated carbon[J]. Science of the Total Environment, 521: 93–304.
  • 2Ahmed I A M, Taylor J H, Bieroza M, et al. 2014. Improving and testing geochemical speciation predictions of metal ions in natural waters[J]. Water Research, 67: 276–291.
  • 3Alvarez-Puebla R A, Garrido J J. 2005. Effect of pH on the aggregation of a gray humic acid in colloidal and solid states[J]. Chemosphere, 59: 659–667.
  • 4Andersen D O, Alberts J J, akács M. 2000. Nature of natural organic matter(NOM)in acidified and limed surface waters[J]. Water Research, 34(1): 266–278.
  • 5Baalousha M, Stolpe B, Lead J R. 2011. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems:a critical review[J]. Chromatogr A, 1218(27): 4078–4103.
  • 6Furman O, Usenko S, Lau B L T. 2013. Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles[J]. Environmental Science & Technology, 47(3): 1349–1356.
  • 7Granger J, Dodds J, LeClerc D, et al. 1986. Flow and diffusion of particles in a channel with one porous wall:polarization chromatography[J]. Chemical Engineering Science, 41(12): 3119–3128.
  • 8Jovanovic' U D, Markovic' M M, Cupac' S B, et al. 2013. Soil humic acid aggregation by dynamic light scattering and laser Doppler electrophoresis[J]. J Plant Nutr Soil Sci, 176: 674–679.
  • 9Kim B, Woo S, Park Y S, et al. 2015. Ionic effect on molecular structure of hyaluronic acid investigated by flow field-flow fractionation and multiangle light scattering[J]. Analytical and Bioanalytical Chemistry, 407(5): 1327–1334.
  • 10李明,曾光明,张盼月,蒋剑宏.强化混凝去除水源水中天然有机物的研究进展[J].环境科学与技术,2006,29(2):109-111. 被引量:27

二级参考文献48

  • 1金鹏康,王晓昌.腐殖酸絮凝体的形态学特征和混凝化学条件[J].环境科学学报,2001,21(S1):23-29. 被引量:41
  • 2朱燕婉 陆长青.腐殖酸-锌络合物稳定性的研究[J].土壤学报,1982,19(1):56-61.
  • 3US EPA. Stage 2 Disinfectants and Disinfection Byproducts Rule: Significant Excursion Guidance Manual [R]. 2003,EPA 815-D-03-004.
  • 4Crazes G, White P, Marshall M. Enhanced Coagulation: Its Effect on NOM Removal and Chemical Costs [J]. Amer Waler Works Assoc,1995, 87(1):78-89.
  • 5O'Melia C R, Becker W C, et al. Removal of humic substances by coagulation[J]. Wat. Sci. Tech, 1999,40(9):47-54.
  • 6Yolk C, Bell K, Ibrahim E, et al. Impact of Enhanced and Optimized Coagulation on Removal of Organic Matter and Its Biodegradable Fraction in Drinking Water[J]. Wat Res,2000,34(12):3247-3257.
  • 7Edwald J K Tobiason J E. Enhanced Coagulation: US Requirements and a Broader View[J]. Wat. Sci. Tech, 1999,40(9):63-70.
  • 8Huck P M. Measurement of Biodegradable Organic Matter and Bacterial Growth in Drinking Water IR]. Amer. Water Works Assoc,1990, 82, 78-86.
  • 9US EPA. Enhanced Coagulation and Enhanced Precipitative Softening Guidance Manual [M]. EPA, Office of Water and Drinking Water, Washington, DC, 1998.
  • 10BoltoB, Dixon D, Eldridge R, et al. Cationic polymer and clay or medal oxide combinations for natural organic matter removal[J]. Wat.Res, 2001,35(11):2669-2676.

共引文献92

同被引文献30

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部