期刊文献+

BP神经网络在低孔渗储层水淹层识别中的应用 被引量:4

Application of BP Neural Network in Identification of water flooded Layer in Low Porosity and Permeability Reservoirs
下载PDF
导出
摘要 针对榆树林油田低孔渗储层水淹层识别难度大,提出以BP神经网络模型为理论基础,结合研究区岩心分析、试油、以及常规测井等资料,建立油层水淹状况与测井响应值之间的对应关系,实现对水淹层的高精度解释。通过对BP神经网络模型的训练,得到满足误差条件的最佳网络。运用最佳网络对测试数据进行检验分析,最终92.9%油层水淹状况解释准确,有效解决了低孔渗储层水淹层识别难度大,精度低的问题。 Aiming at the problem that identification of water flooded layer was difficult in the low porosity and permeability reservoirs of Yushulin oilfield, taking BP neural network model as the theoretical basis, combined with core analysis of the study area, oil testing, as well as the conventional logging data, the relationship between water flooded status and logging response values was established to enhance the precision of interpretation about the water flooded layer. The best network that can satisfy error condition was got by training of the BP neural network model. Then the best network was used to test the testing data. The results show that, 92.9% of oil reservoir water flooded lay identification result is accurate, and it can effectively solve the problem of water flooded layer identification in low porosity and permeability reservoirs.
出处 《当代化工》 CAS 2016年第7期1586-1588,1592,共4页 Contemporary Chemical Industry
基金 国家自然基金项目 项目号:41274132 东北石油大学研究生创新科研项目资助 项目号:YJSCX2016-004NEPU
关键词 榆树林油田 低孔渗储层 水淹层识别 BP神经网络 Yushulin oilfield low porosity and permeability reservoir water flooded layer identification BP neural network
  • 相关文献

参考文献9

二级参考文献79

共引文献117

同被引文献78

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部