期刊文献+

冲击加载下样品软回收过程中的侧向稀疏效应

Lateral release effect in shock-loaded specimens during soft recovery process
下载PDF
导出
摘要 通过数值模拟,计算冲击加载下样品经历一维应变加载过程和侧向稀疏过程产生的塑性功,给出试样内部从冲击加载开始到进入回收桶前全过程的应力随时间变化的历程。结果表明:侧向稀疏过程开始后,样品在径向汇聚波的作用下受循环拉、压载荷作用,拉压循环的振幅在中等冲击压力下达到最大。如果振幅超过了材料的层裂强度,样品中心将发生拉伸破坏不能完整回收。侧向稀疏与一维应变加载产生的塑性功之比随冲击速度的增加而减小。在冲击速度为某临界值时,侧向稀疏产生的塑性功与一维应变加载产生的塑性功相等。在一定的冲击速度下,采用低初始屈服应力的材料可减轻侧向稀疏效应。对理想塑性材料的理论分析表明,侧向稀疏与一维应变加载产生的塑性功之比随冲击速度与屈服强度比值的增大而减小,与数值模拟结果一致。 Under shock loading a specimen undergoes a uniaxial-strain loading process and a lateral release process,both of which have an influence on the residual structure,while the influence of the latter is often underestimated or even totally neglected. The plastic work generated in these two processes is calculated in this paper,and the stress history from the beginning of the shock loading to the specimen entering the recovery bin is given. It is found that after the lateral release process begins,the specimen experiences cyclic tension and compression load and the amplitude of the cyclic load reaches its maximum under moderate impact pressure. If the amplitude of the cyclic load is larger than the spall strength,the center of the specimen will be destroyed and the specimen cannot be recovered successfully. The ratio of the plastic work produced during the lateral release to that produced during the uniaxial-strain loading decreases as the impact velocity increases. When the impact velocity reaches a certain critical value,the plastic work produced during the lateral release is equal to that produced during the uniaxial-strain loading. At a certain impact velocity,decreasing the initial yield stress of the materials reduces the lateral release effects. Theoretical analysis of the ideally plastic material shows that the ratio of the plastic work produced during the lateral release to that produced during the uniaxial-strain loading decreases as the ratio of the impact velocity to the yield strength increases,which is consistent with the numerical results.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2016年第4期532-540,共9页 Explosion and Shock Waves
基金 国家自然科学基金项目(11272296) 中国工程物理研究院面上基金项目(2012B0201017) 冲击波物理与爆轰物理重点实验室基金项目(2012-专-06)
关键词 固体力学 侧向稀疏 残余应变 塑性功 冲击加载 软回收 solid mechanics lateral release residual strain plastic work shock loading soft recovery
  • 相关文献

参考文献19

  • 1Hartman W F. Determination of unloading behavior of uniaxially strained 6061 T6 Aluminum from residual strain measurements[J]. Journal of Applied Physics, 1964,35 (7) : 2090-2096.
  • 2Koller D D, Hixson R S, Gray Ⅲ G T, et al. Influence of shock-wave profile shape on dynamically induced damage in high-purity copper[J]. Journal of Applied Physics, 2005,98( 10):103518.
  • 3Escobedo J P, Dennis-Koller D, Cerreta E K, et al. Effects of grain size and boundary structure on the dynamic tensile response of copper[J]. Journal of Applied Physics, 2011,110(3) 1033513.
  • 4Gray Ⅲ G T, Follansbee P S, Frantz C E. Effect of residual strain on the substructure development and mechanical response of shock-loaded copper[J]. Materials Science and Engineering A, 1989,111(89) : 9-16.
  • 5Follansbee P S, Gray Ⅲ G T. Dynamic deformation of shock prestrained copper[J]. Materials Science and Engi- neering A, 1991,138(1) :23-31.
  • 6Blumenthal W R, Gray Ⅲ G T, Claytor T N. Response of aluminium-infiltrated boron carbide cermets to shock wave loading[J]. Journal of Materials Science, 1994,29 (17) :4567-4576.
  • 7Bourne N K, Gray Ⅲ G T, Millett J C F. On the shock response of cubic metals[J]. Journal of Applied Physics, 2009,106(9) :091301.
  • 8Bourne N K, Millett J C F, Gray Ⅲ G T. On the shock compression of polycrystalline metals[J]. Journal of Mate- rials Science, 2009,44(13) : 3319-3343.
  • 9Bourne N K, Gray III G T. Soft-recovery of shocked polymers and composites[J]. Journal of Physics D: Applied Physics, 2005,38 (19) : 3690-3694.
  • 10Mogilevsky M A, Newman P E. Mechanisms of deformation under shock loadin[J]. Physics Reports, 1983,97 (6) :357-393.

二级参考文献14

  • 1[1]Drucker D C.A more fundamental approach to plastic-stress-strain relations[A].Proc 1st US Natl Congr Appl Mech[C].New York:ASME,1951:487-491.
  • 2[2]ИльюшинАА.塑性[M].王振常,译.北京:建筑工业出版社,1958.
  • 3[7]俞茂鋐.工程强度理论[M].北京:高等教育出版社,1999.
  • 4[9]Li Y C,Wang X J,Huang C Y.Further study on the constitutive relations in dynamic plasticity and the application to stress waves[A].Research and Application in Dynamic Deformation and Fracture of Solids[M].Hefei:Press of USTC,1998:111-119.
  • 5[11]LI Yong-chi,GUO Yang,ZHU Lin-fa,et al.Thermoplastic constitutive relation suitable to dynamic problems in anisotropic and damaged materials[J].The Chinese Journal of Mechanics,2003,19(1):69-72.
  • 6[13]Pergyna P.Fundamental problem in visco-plasticity[A].Advances in Applied Mechanics[M].1966,9.
  • 7[14]Bodner S R,Partom Y.Consititutive equations for elastic-viscoplasitic strain hardening materials[J].Journal of Applied Mechanics,1975,42.
  • 8[15]Cheng J Y,Nemat-Nasser Sia,Guo W.A unified constitutive model for strain-rate and temperature dependent behavior of molybdenum[J].Mechanics of Materials,2001,33.
  • 9[16]LI Yong-chi,TAN Fu-li,GUO Yang,et al.Determination of the damage evolution equation and spallation criterion of metals[J].Journal of Ningbo University (NSEE),2003,16(4):443-447.
  • 10王礼立,应力波基础,1985年

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部