期刊文献+

基于改进特征袋模型的奶牛识别算法 被引量:11

Cow recognition algorithm based on improved bag of feature model
下载PDF
导出
摘要 针对特征袋(BOF)模型中存在特征计算耗时、识别精度低的不足,提出一种新的改进BOF模型以提高其目标识别的精度和效率,并将其应用于奶牛个体识别。该算法首先引入优化方向梯度直方图(HOG)特征对图像进行特征提取和描述,然后利用空间金字塔匹配原理(SPM)生成图像基于视觉词典的直方图表示,最后自定义直方图交叉核作为分类器核函数。该算法在项目组自行拍摄的数据集(包含15类奶牛、共7 500张奶牛头部图像)上的实验结果表明,使用基于SPM的BOF模型将算法的识别率平均提高2个百分点;使用直方图交叉核相比使用高斯核将算法的识别率平均提高2.5个百分点;使用优化HOG特征,相比使用传统HOG特征将算法识别率平均提高21.3个百分点,运算效率为其1.68倍;相比使用尺度不变特征变换(SIFT)特征,在保证平均识别精度达95.3%的基础上,运算效率为其7.10倍。分析结果可知,该算法在奶牛个体识别领域具有较好的鲁棒性和实用性。 Concerning the high time-consuming and low recognition accuracy of Bag of Feature (BOF) model, a new improved BOF model was proposed to improve the accuracy and efficiency of target recognition, and it was also applied to cow recognition. The optimized Histogram of Oriented Gradient (HOG) feature was introduced to feature extraction and description of the images; then the Spatial Pyramid Matching (SPM) principle was used to generate the histogram representation of images based on visual dictionary; finally, the histogram intersection kernel defined in this paper was used as the kernel function of the classifier. The experimental results on the data set in this paper ( including 15 kinds of cows with 7 500 images of cow heads) showed that the recognition rate of the algorithm was improved by an average of 2 percentage points by using the BOF model based on SPM; compared with Gauss kernel, the recognition rate of the algorithm was increased by an average of 2.5 percentage points by using the histogram intersection kernel; compared with traditional HOG feature, the recognition rate of the algorithm was improved by an average of 21.3 percentage points by using optimized HOG feature, and the computation efficiency of the algorithm was improved by an average of 1.68 times; compared with Scale Invariant Feature Transform (SIFT) feature, the computation efficiency of the algorithm was improved by an average of nearly 7.10 times as well as ensuring the average recognition accuracy reached 95. 3%. Analysis results indicate that this algorithm has good robustness and practicability in cow individual recognition.
出处 《计算机应用》 CSCD 北大核心 2016年第8期2346-2351,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61202293) 广东省科技计划项目(2015A020209124)~~
关键词 特征袋模型 图像识别 梯度直方图特征 空间金字塔匹配 尺度不变特征变换特征 Bag of Feature (BOF) model image recognition Histogram of Oriented Gradient (HOG) feature Spatial Pyramid Matching (SPM) Scale Invariant Feature Transform (SIFT) feature
  • 相关文献

参考文献21

  • 1王澍,吕学强,张凯,李卓.基于快速鲁棒特征集合统计特征的图像分类方法[J].计算机应用,2015,35(1):224-230. 被引量:5
  • 2CSURKA G, DANCE C R, FAN L, et al. Visual categorization with bags of keypoints [ EB/OL]. [2015-11-06]. http://www, cs. haifa, ac. il/0 rita/vision_lab_course/2007/Project3_files/csurka_ dance bags_keypoints, pdf.
  • 3WU L, HOI S C H, YU N. Semantics-preserving bag-of-words mod- els and applications [ J]. IEEE Transactions on Image Processing, 2010, 19(7) : 1908 - 1920.
  • 4UIJLINGS J R R, SMEULDERS A W M, SCHA R J H. Real-time visual concept classification [ J]. IEEE Transactions on Multimedia, 2010, 12(7): 665-681.
  • 5ZHENG Z, ZHANG Y, YAN L. Global and local exploitation for saliency using bag-of-words [ J]. IET Computer Vision, 2014, 8 (4) : 299 - 304.
  • 6YU J, JEON M, PEDRYCZ W. Weighted feature trajectories and concatenated bag-of-features for action recognition [ J]. Neurocom- puting, 2014, 131:200-207.
  • 7ANTHIMOPOULOS M M, GIANOLA L, SCARNATO L, et al. A food recognition system for diabetic patients based on an optimized bag-of-features model [ J]. IEEE Journal of Biomedical and Health Informatics, 2014, 18(4) : 1261 - 1271.
  • 8SHEN L, LIN J, WU S, et al. HEp-2 image classification using in- tensity order pooling based features and bag of words [ J]. Pattern Recognition, 2014, 47(7) : 2419 - 2427.
  • 9ZHU C, BICHOT C-E, CHEN L. Visual object recognition using daisy descriptor [ C]//ICME '11 : Proceedings of the 2011 IEEE In- ternational Conference on Multimedia and Expo. Washington, DC: IEEE Computer Society, 2011:1 -6.
  • 10BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up ro-bust features [ C]// ECCV '06: Proceedings of the 9th European Conference on Computer Vision -- Volume Part I. Berlin: Springer-Verlag, 2006:404-417.

二级参考文献44

  • 1VANPANIK V.Statistical learning theory[M].New York:WileyPress,1998.
  • 2PONTIL M,VERRI A.Support vector machine for 3-D object rec-ognition[J].IEEE Transactions on Pattern Analysis and Machine In-telligence,1998,20(6):673-646.
  • 3TEFAS A,KOTROPOULOS C,PITAS I.Using support vector ma-chines to enhance the performance of elastic graph matching for fron-tal face authentication[J].IEEE Transactions on Pattern Analysisand Machine Intelligence,2001,23(7):735-746.
  • 4BENNETT K P,DEMIRIZ A.Semi-supervised support vector ma-chines[C]// Proceedings of the 1998 Advances in Neural Informa-tion Processing Systems.Cambridge:MIT Press,1999:368-374.
  • 5JOACHIMS T.Transductive inference for text classification usingsupport vector machines[C]// ICML 1999:Proceedings of the Six-teenth International Conference on Machine Learning.New York:ACM Press,1999:200-209.
  • 6WANG Y,SANGTENG H.Training TSVM with the proper numberof positive samples[J].Pattern Recognition Letters,2005,26(14):2187-2194.
  • 7YISONG C,GUOPING W,DONG S.Learning with progressivetransductive support vector machine[J].Pattern Recognition Let-ter,2003,24(12):1845-1855.
  • 8BELKIN M,NIYOGI P,SINDHWANI V.Manifold regularization:a geometric framework for learning from labeled and uniabeled exam-ples[J].Journal of Machine Learning Research,2006,7(11):2399-2434.
  • 9GOMEZ-CHOVA L,CAMPS-VALLS G,MUNOZ-MARI J,et alSemisupervised image classification with Laplacian support vectormachines[J].IEEE Geoscience and Remote Sensing Letters,2007,5(3):336-340.
  • 10BEZDEK J C.Cluster validity with fuzzy sets[J]Journal of Cy-bernetics,1974,2(3):58-73.

共引文献9

同被引文献46

引证文献11

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部