期刊文献+

具有不同自由离子的离子交换膜对MFC性能的影响 被引量:1

Effects of Types of Ions in Ion Exchange Membranes on Microbial Fuel Cell Performance
下载PDF
导出
摘要 将4种具有不同自由离子的离子交换膜,即阳离子交换膜的H+型(CEM-H)和Na+型(CEM-Na)、及阴离子交换膜的Cl-型(AEM-Cl)和OH-型(AEM-OH),作为分离膜应用于微生物燃料电池(MFC)。结果表明,4种膜的电导率呈顺序为CEM-H>CEM-Na>AEM-OH>AEM-Cl,与之相对应的MFC产电性能呈相同的顺序。采用CEM-H的MFC产电性能最好,最大功率密度可达899 m W/m2;同时膜性能的不同导致MFC的库伦效率、阳极p H等存在差异。电化学阻抗谱(EIS)研究表明,在电池运行过程中阴离子交换膜的污染造成了较大的内阻,严重影响了其MFC的产电性能。 Four different free ion of ion exchange membranes, namely cation exchange membranes with exchangeable ions of H^+ (CEM-H) and Na^+ (CEM- Na), and anion exchangeable of Cl^- (AEM-Cl) and OH^- (AEM-OH) were used in microbial fuel cells (MFC) as separating membranes. The ion conductivity of the four membranes is in the order of CEM-H〉CEM-Na〉AEM-OH〉AEM-Cl, while the maximum output power of the corresponding MFC shows the same order. The MFC with CEM-H has the highest power density and the lowest internal resistance, the maximum power density reached 899 mW/m^2. The differences in the coulombic efficiency and pH of the solution in cathode chambers were also found in the four MFCs. The results from the electrochemical impedance spectra (EIS) showed that larger membrane resistances in the MFC with anion exchange membranes were due to the membrane fouling during the MFC operation.
出处 《水处理技术》 CAS CSCD 北大核心 2016年第8期69-73,78,共6页 Technology of Water Treatment
基金 国家自然科学基金(21276128 21206075) 教育部博士点基金(20123219120009) 江苏省自然科学基金(BK20141398) 中央高校基本科研业务费专项资金(30920130121014)
关键词 微生物燃料电池 离子交换膜 膜污染 MFC ion exchange membrane membrane fouling
  • 相关文献

参考文献11

  • 1Zhang Y, Angelidaki I. Microbial electrolysis cells turning to be versatile technology: Recent advances and future challenges[J]. Water research,2014,56:11-25.
  • 2Leong J X, Daud W R W, Ghasemi M, et al. Ion exchange membranes as separators in microbial fuel ceils for bioenergy conversion:A comprehensive review [J].Renewable and Sustainable Energy Reviews, 2013,28:575-587.
  • 3Kim J R, Chen S, OH S-E, et al. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells [J].Environmental Science & Technology,2007,41(3): 1004-1009.
  • 4Choi M-J, Chae K-J, Ajayi F F, et al. Effects ofbiofouling on ion transport through cation exchange membranes and microbial fuel cell performance[J].Bioresource Technology,2011,102( 1 ):298-303.
  • 5Zeng Q H, Liu Q L, Ian B, et al. Anion exchange membranes based on quatemized polystyrene-block-poly (ethylene-mn-butylene)-block- polystyrene for direct methanol alkaline fuel cells[J].Journal of Membrane Science,2010,349(1/2):237-243.
  • 6殷瑶,黄光团,陈建文,刘勇弟.微生物燃料电池启动过程的电化学行为[J].华东理工大学学报(自然科学版),2014,40(2):190-195. 被引量:6
  • 7Winfield J, Ieropoulos I, Greenman J, et al. The overshoot phenomenon as a function of internal resistance in microbial fuel cells[J].Bioelectro- chemistry,2011,81 ( 1 ):22-27.
  • 8Hutchinson A J, Tokash J C, Logan B E. Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells[J].Joumal of Power Sources,2011,196(22):9213 -9219.
  • 9Ji E, Moon H, Piao J, et al. Interface resistances of anion exchange membranes in microbial fuel cells with low ionic strength[J].Biosensors and Bioelectronics,2011,26(7):3266-3271.
  • 10Mahendiravarman E, Sangeetha D. Increased microbial fuel cell performance using quaternized poly ether ether ketone anionic membrane electrolyte for electricity generation[J].International Journal of Hydrogen Energy,2013,38(5):2471-2479.

二级参考文献17

  • 1Logan B E. Microbial Fuel Cells[M]. New Jersey: John Wiley & Sons Inc, 2008.
  • 2Logan B E. Exoelectrogenic bacteria that power microbial fuel cells [J]. Nature Reviews Microbiology, 2009, 7 (5) : 375-381.
  • 3Liu Jing, Qiao Yah, Guo Chunxian, etal. Graphene/carbon cloth anode for high performonce mediatorless microbial fuel cells[J]. Bioresource Technology, 2012, 114(1): 275-280.
  • 4Behera M, Jana P S, Ghangrekar M M. Performance evalua- tion of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode[J]. Bioresource Technology, 2010, 101(4), 1183-1189.
  • 5Feng Yuiie, Yang Qiao, Wang Xin, et al. Treatment of graphite fiber brush anodes for improving power generation in air-cathode microbial fuel cells[J]. Journal of Power Sources, 2010, 195(7) : 1841-1844.
  • 6Wang Xin, Feng Yujie, Ren Nanqi, et al. Accelerated start-up of two-chambered microbial fuel cells: Effect of anodic positive poised potential[J]. Electrochimica Acta 2009, 54(3) : 1109-1114.
  • 7Bond D R, Lovley D R. Electricity production by Geobacter sulfurredueens attached to electrodes[J]. Applied and Envi- ronmental Microbiology, 2003, 69(3):1548-1555.
  • 8Liu Guangli, Yates M D, Cheng Shaoan, et al. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments [J]. Bioresource Technology, 2011, 102(15): 7301-7306.
  • 9Rabaey K, Boon N, Siciliano S D, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Applied and Environmental Microbiology, 2004, 70 ( 9 ) : 5373-5382.
  • 10Aelterman P, Rabaey K, Pham T H, et al. Continuous elec- tricity generation at high voltages and currents using stacked microbial fuel cells [J]. Environmental Science and Technology, 2006, 40(10): 3388-3394.

共引文献5

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部