期刊文献+

耗散粒子动力学和纳维边界条件在微米纳米流体力学模拟中的应用

Dissipative Particle Dynamics and Navier Boundary Condition Simulations in Micro-and Nanofluidics
原文传递
导出
摘要 耗散粒子动力学是一种粗粒化的计算模拟方法,在微米和纳米流体力学中有着广泛的应用.由于界面在微小体积流体中的重要性,边界条件的选取在微米和纳米流体的研究中起到了关键性的作用.我们简单地介绍了耗散粒子动力学的模拟方法,并以此为基础,介绍了能够实现纳维边界条件的可调滑移长度的边界条件模拟方法.通过条纹状图案修饰的超疏水表面的流体力学行为研究,和高分子链在微米纳米流体器件中的运动研究2个例子,耗散粒子动力学结合纳维边界条件的模拟方法的实用性和可靠性得到了证实. Dissipative particle dynamics (DPD) is an established method for mesoscale coarse-graining fluid simulations, and has a broad range of applications in studies of micro- and nanofluidics. The method is fully off- lattice and particle based and naturally includes thermal fluctuations. Due to the importance of surface interaction, the choice of boundary condition is essential to micro- and nanofluidic researches. No-slip boundary condition, where the fluid velocity vanishes at a fluid/solid interface, is widely accepted for macroscopic fluids. A more general boundary condition is the Navier boundary condition,which allows fluid to slip. Here we briefly reviewed the DPD method and the tunable-slip method that implements the Navier boundary condition. The applicability and reliability of the simulation methods are demonstrated using two examples:one is the study of flow over a superhydrophobic surface with striped pattern. The simulation results show good agreement with the theoretic and numerical predictions. The second example is the polymer dynamics in a mierofluidic device. The modification of the boundary condition can induce different polymer dynamics under confinement. Both examples demonstrate that DPD simulations can provide guidance in the design of better and efficient micro- and nanofluidic devices.
作者 周嘉嘉
出处 《高分子学报》 SCIE CAS CSCD 北大核心 2016年第8期1021-1029,共9页 Acta Polymerica Sinica
基金 国家自然科学基金(基金号21504004)资助项目
关键词 耗散粒子动力学 可调滑移长度的边界条件 微米和纳米流体力学 计算机模拟 Dissipative particle dynamics, Tunable-slip boundary condition, Micro- and nanofluidics, Computer simulation
  • 相关文献

参考文献62

  • 1Squires T M,Quake S R. Rev Mod Phys,2005,77:977 -1026.
  • 2Batchler G K. An Introduction to Fluid Dynamics. Cambridge:Cambridge University Press,2000.
  • 3Hoogerbrugge P J, Koelman J. Europhys Lett, 1992,19:155 - 160.
  • 4Espanol P, Warren P B. Europhys Lett, 1995,30 : 191 - 196.
  • 5Groot R D,Warren P B. J Chem Phys,1997 ,107 :4423 -4435.
  • 6Succi S. The Lattice Bohzmann Equation. Oxford:Clarendon Press,2001.
  • 7Duenweg B, Ladd A. Adv Polym Sci,2009,221 : 89 - 166.
  • 8Malevanets A, Kapral R. J C hem Phys, 1999,110:8605 - 8613.
  • 9Gompper G, Ihle T, Kroll D, Winkler R. Adv Polym Sci,2009,221:1 -87.
  • 10白志强,夏宇正,石淑先,郭洪霞.PE/PEO/PE-PEO对称三元共混体系相行为的耗散粒子动力学模拟研究[J].高分子学报,2011,21(5):530-536. 被引量:5

二级参考文献319

  • 1陈硕,赵钧,范西俊,王丹.复杂流体流动的耗散粒子动力学研究进展[J].科技通报,2006,22(5):596-602. 被引量:14
  • 2Shen Jiarui(沈家瑞),Jia Detain(贾德民).Polymer Blends and Alloys(聚合物共混物与合金),1^st ed(第一版).Guangzhou(广州):South China University of Technology Press(华南理工大学出版社),1999.1.
  • 3Wu S G,Guo H X. Sci China Ser B-Chem,2008,51:743 -750.
  • 4Liu D H, Zhong C L. Polymer,2008,49 : 1407 - 1413.
  • 5Soto-Figueroa C, Vicente L, Martinez-Magadan J M, Rodriguez-Hidalgo M R. J Phys Chem B ,2007,111 : 11756 - 11764.
  • 6Gai J G,Li H L,Schrauwen C,Hu G H. Polymer,2009,50:336 -346.
  • 7Soto-Figueroa C, Vicente L, Martinez-Magadan J M, Rodriguez-Hidalgo M R. Polymer,2007,48:3902 - 3911.
  • 8Lee W J,Ju S P,Wang Y C. J Chem Phys,2007,127:064902(1 - 11).
  • 9Rubinstein M, Colby R H. Polymer Physics. Oxford:Oxford University Press,2003.53 - 53.
  • 10Bates F S, Fredrickson G H. Annu Rev Phys Chem, 1990,41:525 - 557.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部