期刊文献+

一类二阶时滞微分方程多个周期解的存在性 被引量:2

Existence of Multiple Periodic Solutions for a Second-order Delayed Differential Equation
原文传递
导出
摘要 本文应用重合度定理研究了一类二阶时滞微分方程的多个周期解存在性问题,这类方程的形式为x"(t)+f(t,x(t),x(t-τ(t)))[x'(t)]n+g(t,x(t))=p(t),作为应用,举出了应用实例. By applying the continuation theorem of coincidence degree theory, the existence of multiple periodic solutions for a second-order delayed differential equation of the form x(t)+f(t,x(t),x(t-τ(t)))[x(t)]n+g(t,x(t))=p(t)is established. As an application, an examples is given.
作者 田德生
出处 《应用数学学报》 CSCD 北大核心 2016年第4期537-546,共10页 Acta Mathematicae Applicatae Sinica
关键词 二阶微分方程 时滞 多个周期解 重合度定理 second-order differential equation delay multiple periodic solutions theory of coincidence degree
  • 相关文献

参考文献18

  • 1Attlio Maccari. Bifurcation analysis f parametrically excited Rayleigh-Li~nard oscillitors Dynamics, 2001, 25:293-316.
  • 2Liu Bingwen, Huang Lihong. Periodic solutions for a kind of Raileigh equation with argument. J. Math. Anal. Appl., 2006, 321:491 500.
  • 3Nonlinear a diviating Gao Fabao, Lu Shiping. Existence of periodic solutions for a Li6nard type p-Laplacian differential equation with a diviating argument. Nonlinear Analysis, 2008, 69:4754-4763.
  • 4Ren Jingli, Ge Weigao. On the existence of periodic solutions for the second order functional differ- ential equation. Acta Mathematica Sinica 2004, 47(3): 571-578 (Chinese).
  • 5Ma Shiwang, Wang Zhicheng. Coincidence degree and periodic solutions for Duffing equations. Non- linear Analysis: TMA, 2010, 34(3): 443-460.
  • 6Pournaki M R, Razani A. On the existence of periodic solutions for a class of generalized forced Li6nard equations. Applied Mathematics Letters, 2007, 20:248-254.
  • 7Zhou Qiyuan, Long Fei. Existence and uniqueness of periodic solutions for kind of Li@nard equation with two diviating arguments. J. Comput. Appl. Math., 2007, 206(2): 112~1136.
  • 8Aizieovici S, Papageorgiou N S, Staicu V. Periodic solutions for second order differential inclusions with the scalar p-Laplacian. J. Math. Anal. Appl., 2006, 322:913 929.
  • 9Atslega S, Sadyrbaev F. Multiple periodic annuli in Li6nard type equation. Applied Mathematics Letters, 2010, 23:165-169.
  • 10Lu Shiping, Ge Weigao. Periodic solutions for a kind of Li6nard equation with a diviating argument. J. Math. Anal. Appl., 2004, 289:231 243.

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部