摘要
本文应用重合度定理研究了一类二阶时滞微分方程的多个周期解存在性问题,这类方程的形式为x"(t)+f(t,x(t),x(t-τ(t)))[x'(t)]n+g(t,x(t))=p(t),作为应用,举出了应用实例.
By applying the continuation theorem of coincidence degree theory, the existence of multiple periodic solutions for a second-order delayed differential equation of the form x(t)+f(t,x(t),x(t-τ(t)))[x(t)]n+g(t,x(t))=p(t)is established. As an application, an examples is given.
出处
《应用数学学报》
CSCD
北大核心
2016年第4期537-546,共10页
Acta Mathematicae Applicatae Sinica
关键词
二阶微分方程
时滞
多个周期解
重合度定理
second-order differential equation
delay
multiple periodic solutions
theory of coincidence degree