摘要
设D=(vA)是一个有向图,x,y∈V(D),记O(x)是x控制的顶点的集合,如果O(x)∪O(y)∪{x,y}=V(D),则称x和y控制D.有向图D的控制图记为dom(D),它是—个无向图,顶点集是V(D),且对x,y∈V(D),xy是dom(D)的一条边当且仅当x和y控制D.1998年,Fisher等人首次提出控制图的概念,并完全刻画了竞赛图的控制图.本文研究正则多部竞赛图的控制图,并给出了—个无向图是某个正则多部竞赛图的控制图的一个刻画.
Given a digraph D = (V, A) and x, y ∈ V(D), let O(x) denote the set of vertices which x beats. Two vertices x and y dominate D if O(x) O(y) [2 {x,y} = V(D). The domination graph of D, denoted by dora (D), is a graph with vertices V(D) and for any x, y ∈ V(D), xy is an edge of dom (D) if and only if vertices x and y dominate D. The definition of the domination graph of a digraph was given by Fisher et al. in 1998, and in the same article they also gave a characterization of the domination graphs of tournaments. In this paper, we investigate the domination graph of a regular multipartite tournament and characterize the graph which is the domination graph of regular multipartite tournament.
出处
《应用数学学报》
CSCD
北大核心
2016年第4期555-561,共7页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(11401353)
山西省青年科技研究基金(2013021001-5)
山西省回国留学人员科研(2013-017)资助项目
关键词
正则多部竞赛图
控制图
控制对
regular multipartite tournament
domination graph
domination pair