期刊文献+

正则多部竞赛图的控制图 被引量:2

The Domination Graph of a Regular Multipartite Tournament
原文传递
导出
摘要 设D=(vA)是一个有向图,x,y∈V(D),记O(x)是x控制的顶点的集合,如果O(x)∪O(y)∪{x,y}=V(D),则称x和y控制D.有向图D的控制图记为dom(D),它是—个无向图,顶点集是V(D),且对x,y∈V(D),xy是dom(D)的一条边当且仅当x和y控制D.1998年,Fisher等人首次提出控制图的概念,并完全刻画了竞赛图的控制图.本文研究正则多部竞赛图的控制图,并给出了—个无向图是某个正则多部竞赛图的控制图的一个刻画. Given a digraph D = (V, A) and x, y ∈ V(D), let O(x) denote the set of vertices which x beats. Two vertices x and y dominate D if O(x) O(y) [2 {x,y} = V(D). The domination graph of D, denoted by dora (D), is a graph with vertices V(D) and for any x, y ∈ V(D), xy is an edge of dom (D) if and only if vertices x and y dominate D. The definition of the domination graph of a digraph was given by Fisher et al. in 1998, and in the same article they also gave a characterization of the domination graphs of tournaments. In this paper, we investigate the domination graph of a regular multipartite tournament and characterize the graph which is the domination graph of regular multipartite tournament.
出处 《应用数学学报》 CSCD 北大核心 2016年第4期555-561,共7页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11401353) 山西省青年科技研究基金(2013021001-5) 山西省回国留学人员科研(2013-017)资助项目
关键词 正则多部竞赛图 控制图 控制对 regular multipartite tournament domination graph domination pair
  • 相关文献

参考文献8

  • 1Bang-Jensen J, Gutin G. Digraphs: Theory, Algorithms and Applications. In: Spring Monographs in Mathematics. London: Spring-Verlag, 2001.
  • 2Fisher D C, Lundgren J R, Merz S K. The domination and competition graphs of a tournament. J. Graph Theory, 1998, 29:103 110.
  • 3Moon J W. Topics on tournaments. Holt: Rinehart and Winston, 1968.
  • 4Fisher D C, Lundgren J R, Merz S K. Connected domination graphs of tournanmnts. Y. Combin. Math. Combin. Comput., 1999, 31:169 176.
  • 5Bergstrand D J, Fl'iedler L M. Domination graphs of tournaments and other digraphs. Ars. Combin.,2005, 74:89-96.
  • 6Factor K A S, Merz S K. The (1,2)-step competition graph of a tournament. Discrete Applied Mathematics, 2011, 159:100-103.
  • 7Factor K A S, Langley L J. A characterization of connected (1,2)-domination graphs of tournaments. AKCE Int. J. Graphs Comb., 2011, 8:51-62.
  • 8Volkmann L. Multipartite tournament: a survey. Discrete Mathematics, 2007, 307:3097-3129.

同被引文献1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部