期刊文献+

基于幂函数型双稳随机共振的故障信号检测方法 被引量:19

Fault signal detection method based on power function type bistable stochastic resonance
下载PDF
导出
摘要 在实际的故障诊断中,有用信号经常淹没在噪声中,特征信息提取非常困难。为了提取强噪声背景中的微弱信号,将幂函数型单势阱模型与Gaussian Potential模型相结合提出一种新型的双稳随机共振系统,称为幂函数型双稳随机共振系统。首先,以平均信噪比增益为衡量指标,提出一种寻找最优系统参数组合的算法,使微弱信号、噪声及系统产生最佳的共振效果;然后,基于幂函数型双稳随机共振系统对Levy噪声背景下的仿真信号进行检测;最后提出一种基于小波变换和幂函数型双稳随机共振的微弱信号检测方法并应用于轴承故障信号检测中。仿真实验表明,幂函数型双稳随机共振模型在故障信号检测中是有效和可靠的。 In actual fault diagnosis,useful information is often submerged in heavy noise,so the feature information extraction is very difficult. In order to extract weak signal from strong noise background,in this paper through combining the power function type single potential well model and Gaussian Potential model,a novel bistable stochastic resonance system is proposed,which is called power function type bistable stochastic resonance system. Firstly,the average signal-to-noise ratio gain is taken as the measurement index,an algorithm for searching the optimal system parameter combination is proposed,which makes the weak signal,noise and system produce optimal resonant effect. Then,the power function type bistable stochastic resonance system is used to detect the simulated signal under Levy noise background. Finally,a weak signal detection method based on wavelet transform and power function type bistable stochastic resonance system is proposed and applied to bearing fault signal detection. Simulation experiment results demonstrate that the power function type bistable stochastic resonance system is effective and reliable in fault signal detection.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第7期1457-1467,共11页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61371164) 重庆市杰出青年基金(CSTC2011jjjq40002) 重庆市教育委员会科研项目(KJ130524)资助
关键词 幂函数型双稳随机共振 平均信噪比增益 小波变换 故障信号检测 Levy噪声 power function type bistable stochastic resonance average signal-to-noise ratio gain wavelet transform fault signal detection Levy noise
  • 相关文献

参考文献28

二级参考文献145

共引文献396

同被引文献167

引证文献19

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部