期刊文献+

小变形高温退火对Hastelloy C-276合金晶界特征分布和晶界平面分布的影响 被引量:3

Effect of Low-Strains High Temperature Annealing on the Grain Boundary Character Distributions and the Grain Boundary Plane Distributions of Hastelloy C-276
原文传递
导出
摘要 Hastelloy C-276合金经1150℃+30 min固溶处理后,进行不同变形量的冷轧高温退火处理。采用电子背散射(EBSD)技术对退火后的晶界特征分布和晶界面分布进行表征。结果表明,在退火过程中,Σ1小角度晶界比例减小,变形存储能释放,晶界发生迁移,促进了晶界相互作用,从而导致Σ9和Σ27晶界比例增加。与此同时,晶粒发生异常长大并促进了特殊晶界的形成,产生的特殊晶界阻断了大角度晶界的连通性。合金经变形高温退火之后,Σ3晶界分布在{111}晶界面扭转晶界,Σ9晶界分布在[110]晶带倾斜晶界。不同变形条件下,Σ3晶界面与Σ9晶界面分布演变规律不同,原因在于变形退火导致Σ3晶界比例的不同和晶界之间的相互作用的结果。 Hastelloy C-276 was solution-treated at 1150 ℃for 30 min;afterwards,the samples were cold rolled with different reductions and annealed at high temperature.The grain boundary character distribution(GBCD) and the grain boundary plane distribution were characterized by electron backscatter diffraction(EBSD) technique.The results show the fraction of Σ1 boundary decreases during the annealing process.Meanwhile,the fraction of Σ9 boundary and Σ27 boundary increases.This is due to that the stored energy is exposed to the migration of grain boundaries,promoting the interaction of grain boundaries.While grains grow up abnormally during heat treatment,a special boundary forms.The special boundaries disrupt the connectivity of high angle boundaries.After the low-strains higher temperature annealing process,Σ3 boundaries with the {111} plane are twist boundaries while Σ9 boundaries with the [110] zone are tilt boundaries.Under different deformation conditions,the distribution of Σ3 grain boundary plane is different from that of Σ9 grain boundary plane,because the proportion of Σ3 grain boundaries is different and the interactions of special boundaries occur.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第7期1866-1870,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金(50834008)
关键词 HASTELLOY C-276 晶界特征分布 晶界面分布 形变热处理工艺 Hastelloy C-276 grain boundary character distributions grain boundary plane distributions thermomechanical processing
  • 相关文献

参考文献26

  • 1Akhter J I, Shaikh M A, Ahmad Met al. Journal of Materials Science Letters[J], 200 1,20(4): 333.
  • 2Ahmad M, Akhter J 1, Akhtar M et al. Journal of Alloys and Compounds[J], 2005, 390(1): 88.
  • 3Lu Y, Liu J, Li X et al. Transactions of Nonferrous Metals Society of China[J], 2012, 22: 84.
  • 4Hashim M, Babu K E S R, Duraiselvam M et al. Materials & Design[J], 2013, 46: 546.
  • 5Zhang Q, Tang R, Yin K et al. Corrosion Science[J], 2009, 51(9): 2092.
  • 6Mao Xueping(毛雪平),Lu Daogang(陆道纲),Xu Hong(徐鸿),et al.中国电机工程学报[J],2010,3201):100.
  • 7Lehockey E M, Palumbo G. Materials Science and Engineering A[J], 1997,237(2): 168.
  • 8Kobayashi S, Hirata M, Tsurekawa S et al. Procedia Engineering[J], 2011, 10: 112.
  • 9Watanabe T. Res Mechanica[J], 1984, 11(1): 47.
  • 10Alexandreanu B, Was G S. Scripta Materialia[J], 2006, 54: 1047.

二级参考文献3

共引文献9

同被引文献30

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部