期刊文献+

小型仿人足球机器人MOS-7的系统设计及局部优化 被引量:3

System design and local optimization of a small humanoid soccer robot MOS-7
原文传递
导出
摘要 小型仿人足球机器人在保持较低的构建成本条件下具有推进人工智能及机器人技术进步的潜力。该文在延续MOS系列先前设计的基础上,从结构、控制和软件方面改进并实现了新一代MOS-7小型平台。通过更改髋部关节自由度配置优化了下肢及躯干的空间布局;髋部驱动器连接方式的改进增强了机械结构的可靠性;依据任务实时性和运行快速性合理安排了决策控制系统的任务;图像采集系统实现了图像分辨率、可处理帧速率、可靠性及复杂度这4个维度的联合优化;通过引入粒子决策实现了智能算法的提升。MOS-7设计结果体现出有限资源合理配置、机电系统综合优化等小型仿人机器人设计特点。 Small humanoid soccer robots can be used as inexpensive platforms to improve artificial intelligence and robotic systems. A new generation soccer robot, MOS 7, was developed with a modified structure, control system and software. The spatial arrangement of the lower limbs and trunk was optimized by changing the degree of freedom (DOF) configuration of its hip and improving the connections for the hip actuators to enhance the mechanical reliability. The decision-making and control tasks were arranged according to their real-time needs and running speed. The image capture system was optimized in 4 dimensions., resolution, accessible frame rate, reliablity and complexity. The artificial intelligence was improved by introducing novel particle decision making abilities. The MOS-7 system is then a small humanoid platform that uses limited resources in an integrated and optimized mechanical-electronic system.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第8期811-817,共7页 Journal of Tsinghua University(Science and Technology)
基金 清华大学摩擦学国家重点实验室项目(SKLT09A03) 国家自然科学基金资助项目(61403225) 中国博士后科学基金资助项目(2015M570086)
关键词 仿人机器人 视觉 决策 控制 结构优化 humanoid robot vision decision-making control structure optimization
  • 相关文献

参考文献16

  • 1Asada M, Kitano H, Noda I, et al. RoboCup: Today and tomorrow- What we have learned [J]. Artificial Intelligence. 1999, 110(2): 193-214.
  • 2Bahes J, Sadeghnejad S, Seifert D, et al. RohoCup Humanoid League rule developments 2002 - 2014 and future perspectives [J]. lecture Notes in Computer Science, 2014, 8992:649 - 660.
  • 3Gouaillier D, Hugel V, Btazevic P, et al. Meehatronie design of NAO humanoid [C]//Proeeedings of 2009 IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2009: 769-774.
  • 4Inyong H, Yusuke T, Hajime A. Development of open platform humanoid robot DARwln-OP [J]. Advaneed Robatirs, 2013, 27(27): 617-628.
  • 5Friedmann M, Kiener J, Petters S, et al. Versatile, high-quality motions and behavior control of a humanoid soccer robot [J]. International Journal of Humanoid Rohotics, 2008, 5(3): 417-436.
  • 6Hemker T, Stelzer M, Stryk O. Efficient walking speed optimization of a humanoid robot [J]. International Journal of Robotics Research, 2009, 28(2): 303-314.
  • 7Acosta-Calderon C, Mohan R, Zhou C, et al. A modular architecture for humanoid soccer robots with distributed behavior control [J]. International Journal of Humanoid Roboties, 2008, 5(3) : 397 - 416.
  • 8Yu D, Xiang C, Zhou C, et al. ZJUDancer Team Description Paper: Humanoid Kid-Size League of RoboCup 2014 [R/OL]. [2015-05-201. http://fei, edu. hr/rcs/2014/Team- DescriptionPapers/Humanoid/KidSize/zj udancerTDP2014, pdf.
  • 9汤中华.仿人足球机器人结构设计及动态行走步态研究[D].北京:清华大学,2012.
  • 10The Official Website of the RoboCup Humanoid League. Qualified Teams for RoboCup2015 [R/OL]. [2015-05 201. https://www, roboeuphumanoid, org/hl-2015/teams/.

二级参考文献20

  • 1Kalmar-Nagy T, D'Andrea R, Ganguly P. Near-optimal dynam- ic trajectory generation and control of an omnidirectional vehi- cle[J]. Robotics and Autonomous Systems, 2004, 46(1): 47-64.
  • 2Kamikawa K, Arai T, Inoue K, et al. Omni-directional gait of multi-legged rescue robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2004: 2171-2176.
  • 3Neves C, Ventura R. Survey of semi-passive locomotion methodologies for humanoid robots[C ]//15th International Con- ference on Climbing and Walking Robots and the Support Tech- nologies for Mobile Mechanics. Singapore: World Scientific Publishing Company, 2012: 393-400.
  • 4Kajita S, Kanehiro F, Kaneko K, et al. Biped walking pat- tern generation by using preview control of zero-moment point[C]//IEEE International Conference on Robotics and Au- tomation. Piscataway, USA: IEEE, 2003: 1620-1626.
  • 5Harada K, Kajita S, Kaneko K, et al. An analytical method for real-time gait planning for humanoid robot[J]. Internation- al Journal of Humanoid Robotics 2006, 3( 1 ): 1 - 19.
  • 6Behnke S. Online trajectory generation for omnidirectional biped walking[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2006:1597-1603.
  • 7Graf C, Hartl E, Rofer T, et al. A robust closed-loop gait for the standard platform league hurnanoid[C]//4th Workshop on Hu- manoid Soccer Robots. Piscataway, USA: IEEE, 2009: 30-37.
  • 8Gouaillier D, Collette C, Kilner C. Omni-directional closed- loop walk for NAO[C]//1EEE-RAS International Conference on Humanoid Robots. Piscataway, USA: IEEE, 2010: 448-454.
  • 9Strom J, Slavov G, Chown E. Omnidirectional walking using ZMF' and preview control for the NAO humanoid robot[C]// RoboCup 2009: Robot Soccer World Cup XⅢ. Lecture Notes in Computer Science, vol. 5949. Berlin, Germany: Springer- Verlag, 2010: 378-389.
  • 10Alcaraz-Jimenez J J, Herrero-Perez D, Martinez-Barbera H. Motion planning for omnidirectional dynamic gait in humanoid soccer robots[J]. Journal of Physical Agents, 2011.5(1): 25-34.

共引文献5

同被引文献11

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部