期刊文献+

基于散射成分一致性参数的极化SAR图像分类 被引量:1

Scattering component consistency based parameter for polarimetric SAR image classification
原文传递
导出
摘要 散射熵能较好地反映目标散射的随机性,但忽略了相干矩阵特征分解后3个相干散射成分之间的关系。为了更充分地利用极化信息提取更有效的特征,该文提出一种描述目标散射成分一致性的新参数,并利用该参数进行图像分类。新参数融合了相干矩阵的特征值分布信息与各正交散射成分之间的相似性信息,反映了目标的整体散射机制接近于某种单一相干散射的程度。利用该新特征替代散射熵,先对AIRSAR的旧金山L波段数据进行初始分割,然后进行基于Wishart分类器的迭代调整。实验结果表明:利用该特征能够更准确地实现图像分类,展现地物细节,从而证实了该特征的有效性。 The scattering entropy accurately describes the randomness of a scattering medium, but analyses do not use the relationships between the three eigenvectors representing the different coherent scatterings. More polarization information is extracted by a parameter describing the consistency of the scattering components to classify of polarimetric SAR images. The parameter contains information on the eigenvalue distributions and similarities between the coherent scattering components and represents the closeness of the scattering to simplex coherent scattering. The AIRSAR I-band polarimetric image of San Francisco is segmented using this parameter instead of the scattering entropy and then adjusted by a Wishart classifier. Tests demonstrate the effectiveness of this parameter to improve the classification and object details.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第8期908-912,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(41171317 61132008)
关键词 合成孔径雷达 雷达极化 特征提取 一致性参数 图像分类 synthetic aperture radar radar polarimetry feature extraction consistency parameter image classification
  • 相关文献

参考文献13

  • 1Cloude S R. An entropy based classification scheme for polarimetric SAR [C]// Proceedings of the IGARSS'95. Florence, Italy: IEEE Press, i995:2000-2002.
  • 2Cloude S R, Pottier E. A review of target decomposition theorems in radar polarimetry [J]. IEEE Trans on Geosci and Remote Sensing, 1996, 34(2) : 498 - 518.
  • 3Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR [J]. IEEE Trans on Geosci and Remote Sensing, 1997, 35(1) : 68 - 78.
  • 4Lee J S, Grunes M R, Ainsworth T L, et al. Unsupervised classification using polarimetric decomposition and complex Wishart classifier [J]. IEEE Trans on Geosci and Remote Sensing, 1999, 35(3): 2249-2258.
  • 5Ferro-Famil L, Pottier E, Lee J S. Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier [J]. IEEE Trans on Geosci and Remote Sensing, 2001, 39(11): 2332 - 2342.
  • 6Park S E, Moon W M. Unsupervised classification of scattering mechanisms in polarimetric SAR data using fuzzy logic in entropy and alpha plane [J]. IEEE Trans on Geosci and Remote Sensing, 2007, 45(8) : 2652 - 2664.
  • 7YANG Jian, PENG Yingning, LIN Shiming. Similarity between two scattering matrices [J]. Electronics Letters, 2001, 37(3) : 193 - 194.
  • 8YIN Junjun, YANG Jian, Yamaguchi Y. A new method for polarimetric SAR image classification [C]// Proceedings of theAPSAR2009. Xi'an, China: APSAR, 2009: 733-737.
  • 9YANG Jian, DONG Guiwei, PENG Yingning, et al. Generalized polarimetric contrast enhancement [J]. IEEE Geosci and Remote Sensing Letters, 2004, 1(3) : 171 - 174.
  • 10AN Wentao,ZHANG Weijie,YANG Jian,HONG Wen,CAO Fang.On the Similarity Parameter Between Two Targets for the Case of Multi-Look Polarimetric SAR[J].Chinese Journal of Electronics,2009,18(3):545-550. 被引量:10

共引文献9

同被引文献28

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部