期刊文献+

混合边界条件下广义二维多项时间分数阶扩散方程的解析解

Analytical solution of the generalized muti-term time-fractional diffusion equation in two-dimensions with mixed boundary condition
下载PDF
导出
摘要 广义多项时间分数阶扩散方程已被用于描述一些重要的物理现象,目前,有关该类方程在高维情形下满足混合边界条件的研究仍较少.利用分离变量法考虑有界区域上广义二维多项时间分数阶扩散方程,方程中关于时间变量的分数阶导数采用Caputo分数阶导数的定义,其阶分别定义在[0,1],[1,2].而关于空间变量的偏导数则定义为传统的整数阶导数(二阶),得到了有界区域上广义二维多项时间分数阶扩散方程满足非齐次混合边界条件的解析解.亦可用于求解其他类型的满足不同边界条件的分数阶微分方程的解析解. Generalized multi-term time-fractional diffusion equations have been used to describe important physical phenomena.However,studies on multi-term time-fractional diffusion equations with mixed boundary conditions in high dimensional conditions are still limited.In this paper,a method of separating variables was effectively implemented to solve a generalized multi-term time-fractional diffusion equation(GMTDE)in a finite domain.In this equation,the multi-term time-fractional derivatives were defined in the Caputo sense,whose orders belonged to the intervals[0,1],[1,2],respectively.The space partial derivatives were classical integer order derivatives whose order were 2.We discussed and derived the analytical solution of the GMTDE in two dimensions meeting nonhomogeneous mixed boundary conditions.The technique reported can be applied to other kinds of fractional differential equations with different boundary conditions.
作者 王学彬
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2016年第4期406-410,共5页 Journal of Zhejiang University(Science Edition)
基金 福建省自然科学基金资助项目(2016J01682) 福建省本科高校教育教学改革研究项目(JAS151344) 武夷学院青年教师专项科研基金(xq201022) 武夷学院质量工程项目(Jgzk201019)
关键词 混合边界条件 分离变量法 分数阶扩散方程 mixed boundary conditions method of separating variables time-fractional diffusion equation
  • 相关文献

参考文献11

二级参考文献57

  • 1张淑琴.有限区间上的分数阶扩散波方程的解[J].西北师范大学学报(自然科学版),2005,41(2):10-13. 被引量:6
  • 2YANG Qianqian, LIU Fawang, TURNER I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives [ J ]. Applied Mathematical Modelling, 2010, 34 ( 1 ) : 200-218.
  • 3ILIC M, LIU Fawang, TURNER I, ANH V V. Numerical approximation of a fractional-in-space diffusion equation[J]. Fract Caculus Appl Anal, 2005, 8(3) :323-341.
  • 4SHEN Shujun, LIU Fawang, ANH V V. Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation [ J ]. Numerical Algorithms, 2011, 56 (3) :383-403.
  • 5SHEN Shujun, LIU Fawang. The fundamental solution and numerical solution of the Riesz fractional advection-dipersion equation [ J ]. Journal of Applied Mathematics, 2008, 73:850-872.
  • 6CHEN Jinhuang, LIU Fawang, TURNER I, et al. The Fundamental and numerical solutions of the Riesz space-fractional reaction-dispersion equation[ J]. Anziam, 2008, 50:45-57.
  • 7LENZI E K, MENDES R S, KWOK S F. Nonlinear fractional diffusion equation: exact results[ J ]. Journal of Mathematical physics, 2005, 46:35-61.
  • 8FRANCESCO Mainardi, YURI Luchko, GIANNI Pagnin. The fundamental solution of the space-time fractional diffusion equation[ J ], Fractional Caculus and Applied Analysis, 2009, 4 (21) :153-192.
  • 9HUANG Fenghui, LIU Fawang. The space-time fractional diffusion equation with Caputo derivatives [J]. App Math computing 2005, 19(12) : 179-190.
  • 10HUANG Fenghui, LIU Fawang. The time fractional diffusion equation and the advection-dispersion equation [ J ]. Anziam, 2005, 46:317-330.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部