期刊文献+

结合目标提取和压缩感知的红外与可见光图像融合 被引量:18

Fusion of infrared and visible images based on target segmentation and compressed sensing
下载PDF
导出
摘要 针对红外与可见光图像融合易受噪声干扰从而使目标信息减弱的问题,提出了一种基于目标区域提取和压缩感知的融合算法。首先,在频率域上对红外图像进行显著区域检测得到其对应的显著度图,并在显著图指导下结合区域生长法提取红外图像的目标区域,有效抑制噪声与复杂背景的干扰。然后,用非下采样剪切波变换对待融合的图像进行分解,采用不同的融合策略分别对目标与背景区域的高、低频子带进行融合。针对背景区域提出一种新的基于多分辨率奇异值分解和压缩感知的融合规则,最后,进行非下采样剪切波逆变换得到融合图像。与其他算法的对比实验结果表明,本文算法能更好地突出目标区域,保留图像细节信息,抑制噪声干扰;图像质量评价指标中的信息熵、标准差、互信息、边缘保持度分别提高了3.94%,19.14%,9.96%和8.52%。 The image fusion of infrared and visible light is susceptible to noise and the target information is weakened easily. Therefore, a new fusion algorithm based on target area extraction and compressed sensing was proposed. Firstly, the infrared image was detected in a salient region at frequency-tuned domain to obtain a corresponding salient map. Under the guidance of the salient map, the infrared target area was extracted together with region growing method to effectively overcome the effects of noise and complex background interference on target segmentation. Then, non-subsampled shearlet transform was adopted to decompose the source images and the high and low frequency subbands in the target and backgound regions were fused respectively. Finally, a new fusion rule was proposed based on multi-resolution singular value decomposition and compressed sensing, and the fused image was reconstructed by the non-subsampled shearlet inverse transform. As compared with the other algorithms, experimental results show that the algorithm highlights the target area, preserves the details of the source images and suppresses the noise interference. The image fusion quality evaluation indexes including information entropy, standard deviation, mutual information and transferred edge information have increased by 3.94% ,19.14%,9.96%and 8.52%, respectively.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2016年第7期1743-1753,共11页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.61303132) 吉林省科技厅自然科学基金资助项目(No.201215127)
关键词 图像融合 红外图像 可见光图像 显著度图 非下采样剪切波变换 目标提取 压缩感知 多分辨率奇异值分解 image fusion infrared image visible image saliency map non-subsampled shearlet transform target segmentation compressed sensing multi-resolution singular value decomposition
  • 相关文献

参考文献8

二级参考文献97

  • 1何国栋,梁栋,姚红,夏颖,李新华.基于非抽样Contourlet变换的红外图像和可见光图像融合算法[J].微电子学与计算机,2009,26(2):8-11. 被引量:4
  • 2杨俊,赵忠明.基于Curvelet变换的多聚焦图像融合方法[J].光电工程,2007,34(6):67-71. 被引量:20
  • 3Abutaleb A S. Automatic thresholding of gray-level pictures using two-dimension entropy [J]. Computer Vision, Graphics and Image Processing, 1989, 47( 1 ): 22-32.
  • 4Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram [ J ]. Computer Vision, Graphics and Image Processing, 1985, 29(3): 273-285.
  • 5Kennedy J, Eberhart R C, Particle swarm optimization[ C ], Proceedings of the IEEE International Conference on Neural Networks, 1995, 1942-1948.
  • 6Kennedy J, Eberhart R C, Shi Y, Swarm Intelligence [ M ],San Francisco: Morgan Kaufmann Publishers, 2001.
  • 7Davis L. Handbook of Genetic Algorithm [ M ]. New York:van Nostrand, 1991.
  • 8Haralick R M, Shapiro L G. Image segmentation techniques [J], Comput. Vision Graphics Image Process, 1985,29:100-132.
  • 9Otsu N. A threshold selection method from gray-level histogram [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
  • 10Yasuno M, Ryousuke S, Yasuda N, et al. Pedestrian detection and tracking in far infrared images[C]//Proceedings of IEEE Intelligent Transportation Systems. Vienna, Austria: IEEE, 2005: 182-187.

共引文献133

同被引文献108

引证文献18

二级引证文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部