期刊文献+

基于c++三维数组实现大整数相乘的算法 被引量:1

Algorithm Based on c++ Three-Dimensional Array to Achieve Large Integer Multiplication
下载PDF
导出
摘要 在程序设计中,每种数据类型有数值范围限制,若两个位数较长的大数值整数相乘,积容易溢出,一般处理对策是将整数乘法转换成浮点乘法以提高计算精度,拓宽数值计算的范围。文章分析了印度数学家婆什伽罗名著《丽罗娃提》中的格子乘法规则,借用三维数组替代格子乘法中斜线宫格,将两个大整数每个位数进行交叉相乘,利用程序设计的循环结构将斜线宫格中的同位数值进行相加、依次进位,完成了大整数乘法算法研究,并给出了c++语言的实现代码。 In program design, each type of data in a numerical range limit, if two digits longer numerical large integer multiplication, the product is easy to overflow, the general processing strategy is will integer multiplication is converted into floating point multiplication in order to improve the calculafon precision, and to broaden the scope of numerical calculation. Based on the analysis of the Indian mathematician Bhaskara classics the Lirova provided in lattice multiplication rule, use the three dimensional array of alternatives multiplication grid diagonal grids, each two big integer number were cross multiplication, will slash grids in the same bit values are added together, in order to carry, the completion of the large integer multiplication algorithm using loop structure of the program design, and gives the C + + language implementation code.
出处 《电脑与信息技术》 2016年第4期16-18,共3页 Computer and Information Technology
关键词 数据类型 格子乘法 三维数组 位相乘 data type lattice multiplication three-dimensional array bit multiplication
  • 相关文献

参考文献2

二级参考文献13

  • 1[4]Bernardo A B I. Asymmetric activation of number codes in bilinguals: Further evidence for the encoding complex model of number processing. Memory & Cognition. 2001, 29 (7): 968~976
  • 2[5]Blankenberger S, Vorberg D. The single-format assumption in arithmetic fact retrieval. Journal of Experimental Psychology: Learning, Memory and Cognition, 1997, 23(3): 721~738
  • 3[6]Roussel J, Fayol M, Barrouillet P. Procedural vs. Direct retrieval strategies in arithmetic: A comparison between additive and multiplicative problem solving. European Journal of Cognitive Psychology, 2002, 14(1): 61~104
  • 4[8]Rossor M N, Warrington E K, Cipolotti L. The isolation of calculation skills. Journal of Neurology, 1995, 242: 78~81
  • 5[9]Cohen L, Dehaene S. Amnesia for arithmetic facts: A single-case study. Brain and Language, 1994, 47: 214~232
  • 6[10]Campbell J I D. Architectures for numerical cognition. Cognition, 1994, 53: 1~44
  • 7[11]Zbrodoff N J. Why is 9+7 harder than 2+3: Strength and interference as explanations of the problem-size effect. Memory & Cognition, 1995, 23: 689~700
  • 8[13]Groen G J, Parkman J M. A chronometic analysis of simple addition. Psychological Review,1972, 79: 329~343
  • 9[14]LeFevre J, Sadesky G S, Bisanz J. Selection of procedures in mental addition: reassessing the problem size effect in adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1996, 22: 216~230
  • 10[16]LeFevre J, Liu J. The role of experience in numerical skill: Multiplication performance in adults from Canada and China. Mathematical Cognition, 1997, 3(1): 31~62

共引文献8

同被引文献24

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部