期刊文献+

基于SLIC的GrabCut减小姿态搜索空间算法

GrabCut Algorithm Based on SLIC for Pose Search Space Reduction
下载PDF
导出
摘要 针对人体的高自由度导致姿态估计过程中搜索空间过大的问题,提出一种基于简单线性迭代聚类(SLIC)超像素算法的Grab Cut减小姿态空间算法。运用SLIC算法对图像进行超像素分割,以超像素作为s-t图中的节点构建图模型,利用超像素区域的颜色特征平均值作为该区域内每个像素的特征值,分别为前景和背景超像素建立混合高斯模型,迭代更新高斯参数,运用最小割算法完成前景提取,并在得到的前景区域中进行后续的姿态估计。实验结果表明,基于SLIC的Grab Cut与基于Grab Cut的减小搜索空间算法在运行时间和姿态估计准确度上均有较大程度提升。 In order to solve the problem of extremely large size of pose search space due to body parts' high degree of freedom during pose estimation, a pose search space reducing algorithm of GrabCut based on Simple Linear Iterative Clustering (SLIC) superpixel approach is proposed. SLIC algorithm is used to segment images into superpixels which are applied as nodes to build a s-t graph. The mean value of color feature in the area of a superpixel is used as the feature value of each pixel in that area. Foreground and background Gaussian Mixture Models (GMM) are respectively built and Gaussian parameters are updated using iterative processing. Image foreground extraction is achieved using Min Cut. Pose estimation is performed only in the foreground area obtained by foreground extraction. Experimental results show that comparing to pose search space reduction method based only on GrabCut, the algorithm of GrabCut using SLIC has much better performance on both running time and pose estimation accuracy.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第8期266-270,共5页 Computer Engineering
基金 国家自然科学基金青年科学基金资助项目(61402053) 湖南省教育厅科研基金资助项目(15C0283) 湖南省交通运输厅科技进步与创新基金资助项目(201334)
关键词 人体姿态估计 姿态搜索空间 超像素 简单线性迭代聚类算法 GRAB Cut算法 human pose estimation pose search space superpixel Simple Linear Iterative Clustering (SLIC)algorithm GrabCut algorithm
  • 相关文献

参考文献15

  • 1Ren X,Malik J.Learning a Classification Model for Segmentation[C]//Proceedings of ICCV’03.Nice,France:[s.n.],2003:10-17.
  • 2王春瑶,陈俊周,李炜.超像素分割算法研究综述[J].计算机应用研究,2014,31(1):6-12. 被引量:116
  • 3南柄飞,穆志纯.基于SLIC0融合纹理信息的超像素分割方法[J].仪器仪表学报,2014,35(3):527-534. 被引量:13
  • 4Shi J,Malik J.Normalized Cuts and Image Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
  • 5Comaniciu D,Meer P.Mean Shift:A Robust Approach Toward Feature Space Analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 6Levinshtein A,Stere A,Kutulakos K,et al.Turbopixels:Fast Superpixels Using Geometric Flows[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(12):2290-2297.
  • 7Shotton J,Sharp T,Kipman A,et al.Real-time Human Pose Recognition in Parts from Single Depth Images[J].Communications of the ACM,2013,56(1):116-124.
  • 8Mori G.Guiding Model Search Using Segmentation[C]//Proceedings of ICCV’05.Beijing,China:[s.n.],2005:1417-1423.
  • 9Achanta R,Shaji A,Smith K.SLIC Superpixels Compared to State-of-the-art Superpixel Methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2274-2281.
  • 10Kanungo T,Mount D M,Netanyahu N S,et al.An Efficient K-means Clustering Algorithm:Analysis and Implement-ation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,24(7):881-892.

二级参考文献74

  • 1ROTHER C, KOLMOGOROV V, BLAKE A. GrabCut: interactive foreground extraction using iterated graph cuts [ J]. ACM Transac- tions on Graphics, 2004, 23(3): 309-314.
  • 2CHEN D, CHEN B, MAMIC G, et al. Improved GrabCut segmentation via GMM optimization [ C] // Proceedings of the 2008 International Con- ference on Digital Image Computing: Techniques and Applications. Washington, DC: IEEE Computer Society, 2008:39-45.
  • 3HANS D, TAO W B, WANG D S, et al. Image segmentation based on GrabCut framework integrating multiscale nonlinear struc- ture tensor [ J]. IEEE Transactions on Image Processing, 2009, 18 (10) : 2289 -2302.
  • 4王钧铭,高立鑫,赵力.基于分水岭预分割的Grabcut算法[J].声学技术,2008,27(4):179-182.
  • 5VINCENT L, SOILLE P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6) : 583 - 598.
  • 6REN Xiao-fimg, MAI,IK J. Learning a classification model for seg- mentation[ C ]//Proc of the 9th IEEE International Conference on Computer Vision. Washington DC :IEEE Computer Society ,2(X)3 : 10-17.
  • 7FEIZENSWALB P F, HUTFENLOCHER D P. Efficient graph-based image segmentation [ J ]. International Journal of Computer Vision, 2004, 59(2):167-181.
  • 8SHI Jian-bo, MALIK J. Normalized cuts and image segmentation [C]//Proc of IEEE Computer Society Conference on Computer Vi-sion and Pattern Recognition. Washingtan DC:IEEE Camputer Socie- ty, 1997:731-737.
  • 9SHI Jian-bo, MAL1K J. Normalized cuts and image segmentation[ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8) :888-905.
  • 10MOORE A, PRINCE S, WARRELI. J, et al. Superpixel lattices [ C]//Proc of IEEE Conference on Computer Vision and Pattern Rec- ognition. 2008 : 1-8.

共引文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部