期刊文献+

基于颜色粒子滤波的多目标跟踪器设计

Design of Multi-object Tracker Based on Color Particle Filtering
下载PDF
导出
摘要 针对多目标跟踪中的目标遮挡和身份切换问题,在颜色粒子滤波的基础上,将单目标跟踪器扩展为多目标跟踪器。当目标轨迹彼此较接近时,利用自适应冲突预防模型分离临近轨迹。当目标发生遮挡时,跟踪器的整体模型会被分割成多个部分,使用可见部分执行跟踪和遮挡推理。当目标外观相似时,使用轨迹监测方法处理遮挡情况。当目标发生完全遮挡时,重新初始化遮挡者周围的粒子并采集目标,从而实现多目标跟踪。实验结果表明,与MIT和LSAM跟踪器相比,该跟踪器在假阴性率、假阳性率、误匹配率和多目标跟踪准确率方面均具有明显的性能优势。 Aiming at the problems of occlusion and identification switching in multi-object trackeing, an extension scheme from a single-object tracker to a multi-object tracker is proposed based on color particle filtering. When the trajectories are very close to each other, the proposed adaptive conflict prevention model is utilized to separate trajectories close to each other. When object occlusion occurs, the overall model of the tracker is divided into several parts, and the visible parts are used to execute tracking and occlusion reasoning. When the objects are similar in appearance, monitoring method is applied to handle the occlusion. When the object is completely occluded, the particles around the occluded objects are re-initialized to collect the re-emergencing object and realize multi-object tracking. Experimental results show that the proposed tracker has obvious advantages in the aspect of False Negative Rate (FNR), False Positive Rate (FPR), Mis-matching Rate(MMR), and Muti-object Tracking Accuracy (MOTA) compared with MIT and LSAM trackers.
作者 卫娟 王崇科
出处 《计算机工程》 CAS CSCD 北大核心 2016年第8期316-321,共6页 Computer Engineering
基金 河南省教育厅科学技术研究基金资助重点项目(13A520221 14A520045) 河南省教育科学"十二五"规划课题基金资助项目(2012-JKGHAC-0116)
关键词 多目标跟踪器 冲突预防模型 遮挡 身份切换 跟踪准确率 multi-object tracker conflict prevention model occlusion identification switching tracking accuracy
  • 相关文献

参考文献14

  • 1李静,王军政.图像检测与目标跟踪技术[M].北京:北京理工大学出版社,2013.
  • 2彭爽,蒋荣欣.面向高清视频监控系统的实时运动检测算法[J].计算机工程,2014,40(11):288-291. 被引量:9
  • 3Ning Jifeng,Zhang Lei.Robust Mean-shift Tracking with Corrected Background-weighted Histogram[J].IET Computer Vision,2012,17(1):62-69.
  • 4Li Wenhui,Lin Yifeng,Fu Bo,et al.Cascade Classifier Using Combination of Histograms of Oriented Gradients for Rapid Pedestrian Detection[J].Journal of Software,2013,8(1):1532-1539.
  • 5Liu Baiyang,Huang Junzhou.Robust Tracking Using Local Sparse Appearance Model and K-selection[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2011:1313-1320.
  • 6Kyriazis N,Argyros A.Scalable 3D Tracking of Multiple Interacting Objects[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recogni-tion.Washington D.C.,USA:IEEE Press,2014:3430-3437.
  • 7Yu Ting,Wu Ying.Collaborative Tracking of Multiple Targets[C]//Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2004:834-841.
  • 8刘晨光,程丹松,刘家锋,黄剑华,唐降龙.一种基于交互式粒子滤波器的视频中多目标跟踪算法[J].电子学报,2011,39(2):260-267. 被引量:15
  • 9Pirsiavash H,Ramanan D,Fowlkes C C.Globally-optimal Greedy Algorithms for Tracking a Variable Number of Objects[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2011:1201-1208.
  • 10Musicki D,Song T L,Lee H H,et al.Correlated Dopplerassisted Target Tracking in Clutter[J].IET Radar Sonar and Navigation,2013,7(1):94-100.

二级参考文献39

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:254
  • 2常发亮,马丽,刘增晓,乔谊正.复杂环境下基于自适应粒子滤波器的目标跟踪[J].电子学报,2006,34(12):2150-2153. 被引量:20
  • 3I Haritaoglu, D I-Iarwood, L S Davis. W4: Real-lime surveil- lance of people and their aclivities[J ]. lhIEEE. Tram on PAMI, 2000,22(8) :809 - 830.
  • 4A M Elgammal, L S Davis. Probabilistic framework for seg- menting people under occlusion [ A ]. International Confelence on Computer Vision[C]. Vancouver, Canada: IEEE Computer Society,2001.145 - 152.
  • 5T Zhao, R Nevalia. Tracking multiple humans in complex situa tions[ J]. 1EEE Tram on PAMI,2004,26(9) : 1208 - 1221.
  • 6M Isard,A Blake.A mixed-store condensation tracker with au tomatic model-switching[ A]. International Conference on Com puter Vision[ C]. Washington, DC, USA: IEEE. Computer Soci ety, 1998.107 - 112.
  • 7M Isard, A Blake. CONDENSATION (Conditional density propagation for visual tracking) [ J ]. International Journal on Computer Vision, 1998,1 (29):5- 28.
  • 8J S Liu, R Chen. Sequential monte carlo methods for dynamic systems[J]. Jotlmal of Amenican Statistical Association, 1998,.93(443) : 1032 - 1044.
  • 9M Isard, J MacComfick. BraMBLe: a Bayesian mulfiple-blob tracker[ A]. International Conference on Computer Vision[ C ]. Vancouver,Canada: IEEE. Computer Society,2001.34- 41.
  • 10A D Jepson,D J Fleet,T F Ei-Maraghi. Robust online appear ance models for visual llacking [ J ]. IEEE Trans on PAMI, 2003,25(10) : 1296 - 1311.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部