期刊文献+

Asymtotics of Dantzig Selector for a General Single-Index Model

Asymtotics of Dantzig Selector for a General Single-Index Model
原文传递
导出
摘要 As two popularly used variable selection methods, the Dantzig selector and the LASSO have been proved asymptotically equivalent in some scenarios. However, it is not the case in general for linear models, as disclosed in Gai, Zhu and Lin's paper in 2013. In this paper, it is further shown that generally the asymptotic equivalence is not true either for a general single-index model with random design of predictors. To achieve this goal, the authors systematically investigate necessary and sufficient conditions for the consistent model selection of the Dantzig selector. An adaptive Dantzig selector is also recommended for the cases where those conditions are not satisfied. Also, different from existing methods for linear models, no distributional assumption on error term is needed with a trade-off that more stringent condition on the predictor vector is assumed. A small scale simulation is conducted to examine the performances of the Dantzig selector and the adaptive Dantzig selector.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2016年第4期1123-1144,共22页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant Nos.11501354,11201499,11301309 and 71473280 2015 Shanghai Young Faculty Training Program under Grant No.A1A-6119-15-003
关键词 Adaptive Dantzig Selector Dantzig selector general single-index model model selection consistency. 适应 Dantzig 选购者;Dantzig 选购者;一般单个索引的模型;为选择一致性建模;
  • 相关文献

参考文献1

二级参考文献42

  • 1An H, Huang D, Yao Q, et al. Stepwise searching for feature variables in high-dimensional linear regression. http: / /'stats.lse.ac.uk/q. yao/qyao.links/paper /ahyzO8.pdf, 2008.
  • 2Bondell H D, Li L. Shrinkage inverse regression estimation for model-free variable selection. J R Star Soc Ser B Stat Methodol, 2009, 71:287-299.
  • 3Bradic J, Fan J, Jiang J. Regularization for Cox's proportional hazards model with NP-dimensionality. Ann Statist, 2011, 39:3092-3120.
  • 4Bradic J, Fan J, Wang W. Penalized composite quasi-likelihood for ultrahigh dimensional variable selection. J R Stat Soc Ser B Stat Methodol, 2011, 73:325-349.
  • 5Cai T, Liu W, Luo X. A constrained ll minimization approach to sparse precision matrix estimation. J Amer Statist Assoc, 2011, 106:594-607.
  • 6Chen ,I Chen Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 2008. 95:759-771.
  • 7Chen X, Zou C, Cook R D. Coordinate-independent sparse sufficient dimension reduction and variable selection. Ann Statist, 2010, 38:3696-3723.
  • 8Cook R D. Regression Graphics: Ideas for Studying Regressions through Graphics. New York: Wiley & Sons, 1998 Cook R D, Ni L. Sufficient dimension reduction via inverse regression: A minimum discrepancy approach. J Amer Statist Assoc, 2005, 100:410-428.
  • 9Dettling M. Bagboosting for tumor classification with gene expression data. Bioinformatics, 2004, 20:3583-3593.
  • 10Dudoit S, Pridlyand J, Speed T P. Comparison of discrimination methods for the classification of tumors using gene expression data. J Amer Statist Assoc, 2002, 97:77-87.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部