期刊文献+

Monte Carlo Likelihood Estimation of Mixed-Effects State Space Models with Application to HIV Dynamics

Monte Carlo Likelihood Estimation of Mixed-Effects State Space Models with Application to HIV Dynamics
原文传递
导出
摘要 The statistical inference for generalized mixed-effects state space models (MESSM) are investigated when the random effects are unknown. Two filtering algorithms are designed both of which are based on mixture Kalman filter. These algorithms are particularly useful when the longitudinal ts are sparse. The authors also propose a globally convergent algorithm for parameter estimation of MESSM which can be used to locate the initial value of parameters for local while more efficient algorithms. Simulation examples are carried out which validate the efficacy of the proposed approaches. A data set from the clinical trial is investigated and a smaller mean square error is achieved compared to the existing results in literatures.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2016年第4期1160-1176,共17页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant No.71271165
关键词 Mixed-effects mixture Kalman filter state estimation state space model. 混合效果;混合 Kalman 过滤器;州的评价;说空间模型;
  • 相关文献

参考文献16

  • 1Liu D C, Lu T, Niu X F, et al., Mixed-effects state-space models for analysis of longitudinal dynamic systems, Biometrics, 2011, 67(2): 476-485.
  • 2Chen R and Liu J S, Mixture Kalman filter, Journal of the Royal Statistical Society, Series B, 2000, 62: 493-508.
  • 3Gilks W R and Berzuini C, Following a moving target-Monte Carlo inference for dynamic Baysian models, Journal of the Royal Statistical Society, Series B, 2001, 63: 127-146.
  • 4Khan Z, Balch T, and Dellaert F, MCMC based particle filtering for tracking a variable number of interacting targets, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27: 1805-1819.
  • 5Gilks W R, Richardson S, and Spiegelhalter D J, Markov Chain Monte Carlo in practice, Chap- man and Hall/CRC, 1996.
  • 6West M, Approximating posterior distributions by mixtures, Journal of the Royal Statistical Society, Series B, 1993a, 55: 409-422.
  • 7West M, Mixture models, Monte Carlo, Bayesian updating and dynamic models, Ed. by Newton J H, Computing Science and Statistics: Proceedings of the 24th Symposium on the Interface, Interface Foundation of North America, Fairfax Station, Virginia, 1993b, 325-333.
  • 8Liu J S and West M, Combined parameter and state estimation in simulation-based filtering, Sequential Monte Carlo Methods in Practice editted by Doucet A, de Freitas, and Gourdon N, 2001, 197-223.
  • 9Gordon N J, Salmond D J, and Smith A F M, Novel approach to nonlinear/non-Gaussian bayesian state estimation, IEEE Proceedings F, 1993, 140: 107-113.
  • 10Hiirzeler M and Kiinsch H R, Approximating and Maximising the likelihood for a General state space model, Sequential Monte Carlo Methods in Practice, Eds. by Doucet A, de Freitas, and Gourdon N, 2001, 159-173.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部