期刊文献+

地沟油化学链强化重整制氢工艺热力学分析 被引量:1

Thermodynamic Analysis of Hydrogen Production via Sorption-Enhanced Chemical Looping Reforming of Waste Cooking Oil
下载PDF
导出
摘要 以地沟油为原料的化学链强化重整制氢系统,不仅节省化石燃料,同时减少CO2等温室气体排放。利用Aspen Plus对该系统进行建模,以产品气组成(干基),H2产率(Y)和系统火用效率(η)为系统性能评价指标,分析NiO循环量与进料碳摩尔比(NiO/C),进料水蒸气量与进料碳摩尔比(S/C),CaO循环量与进料碳摩尔比(Ca/C)对系统性能的影响。结果表明,Ni O/C在0.5-1.8区间变化时,产品气中H2体积分数降低0.01左右,Y及η减少;S/C在1-5区间变化时,产品气中H2含量从0.85升到0.98,Y与η增大;Ca/C从0增至1.05,由于Ca O的强化作用,产品气中CO2含量趋近0,H2含量从0.10增至0.98,Y和η增大到峰值。在操作条件为NiO/C=0.83、S/C=4.10、Ca/C=1.05时,地沟油制氢系统性能最优,产品气中H2体积分数可达0.98,Y为1.95,η为0.81。 Hydrogen production via sorption-enhanced chemical looping reforming of waste cooking oil(WCO) not only save fossil fuels but also reduce emissions of green house gas such as CO2. The system is simulated by Aspen Plus and investigated by thermodynamic analysis. The effects of Ni O to carbon molar ratio(NiO/C),steam to carbon molar ratio(S/C),and Ca O to carbon molar ratio(Ca/C) on performance indicators,i.e. hydrogen yield(Y),production gas composition(dry gas),system exergy efficiency(η)are analyzed. The results show,with the increase of Ni O/C from 0.5 to1.8,H2 concentration declines by 0.01,Y and η both are dropped;increasing S/C from 1 to 5,there is a growth of H2 concentration from 0.85 to 0.98,which lead to the increase of η and Y. With the rise of Ca/C from 0 to 1.05,CO2 is totally captured,H2 concentrations grow up to 0.99,Y and η both are increased. Consequently,with the optimal conditions of Ni O/C 0.83,S/C 4.10 and Ca/C 1.05,H2 concentration is up to 0.98,Y and η both reach to the optimum value,at 1.95 and0.81,respectively.
出处 《环境科学与技术》 CAS CSCD 北大核心 2016年第7期59-63,共5页 Environmental Science & Technology
基金 西南石油大学研究生创新基金(CXJJ2015013)
关键词 地沟油 化学链重整 制氢 ASPEN Plus 热力学分析 waste cooking oil chemical looping reforming hydrogen production Aspen Plus thermodynamic analysis
  • 相关文献

参考文献11

  • 1Das D, Vezirolu T N. Hydrogen production by biological processes:a survey of literature [J]. International Journal of Hydrogen Energy, 2001,26( 1 ) : 13-28.
  • 2Wang B, Yan R. Thermodynamic investigation of carbon deposition and sulfur evolution in chemical looping combustion with syngas[J]. Energy & Fuels, 2008,9:1012-1020.
  • 3Pimenidou P, Rickett G, Dupont V, et al. High purity H2 by sorption-enhanced chemical looping reforming of waste cooking oil in a packed bed reactor[J]. Bioresource Technology, 2010,101(23):9279-9286.
  • 4潘永敏,靳玉彬.燃煤电厂CO_2燃烧后捕获技术研究进展[J].环境科学与技术,2014,37(S2):278-284. 被引量:10
  • 5张鉴达,申哲民,孟祥明,马晶,雷阳明.富含甲烷的可再生资源重整制氢的研究进展[J].环境科学与技术,2010,33(5):85-88. 被引量:4
  • 6Diego L F De, Ortiz M, Garcfa-Labiano F, et al. Hydrogen production by chemical-looping reforming in a circulating fluidized bed reactor using Ni-based oxygen carriers [J]. Journal of Power Sources, 2009,192( 1 ) : 27-34.
  • 7Ramos P. Thermodynamic Analysis of Hydrogen Production via Sorption-Enhanced Chemical-Looping Reforming [R]. Portugal: IST Institute Superior T6cnico, 2011 : 1-10.
  • 8Ryden M, Lyngfelt A, Mattisson T, et al. Novel oxygen- carrier materials for chemical-looping combustion and chemical-looping reforming : LaxSr1-xFeyCo1-yO3-δ perovskites and mixed-metal oxides of NiO, Fe2O3 and Mn3O4[J]. International Journal of Greenhouse Gas Control, 2008,2 (1): 21-36.
  • 9Mehta P S, Anand K. Estimation of a lower heating value of vegetable oil and biodiesel fuel [J]. Energy & Fuels, 2009, 23(8) : 3893-3898.
  • 10Wang W, Cao Y, Wang Y. Natural gas fuelled chemical looping reforming with carbon dioxide capture technology for hydrogen generation: thermodynamic investigation [J]. Journal of the Energy Institute, 2011,84(2 ) :94-101.

二级参考文献47

  • 1闫江,江娟.生活垃圾厌氧堆肥产甲烷及古细菌多样性分析[J].环境科学与技术,2006,29(4):9-10. 被引量:2
  • 2程仕平,王德志,汪异,王光君,杨刘晓,赵宝华.氧化钼氢还原动力学研究[J].稀有金属材料与工程,2007,36(3):459-462. 被引量:9
  • 3聂永丰,张秀蓉,钱海燕.城市垃圾填埋及沼气收集利用[J].中国沼气,1997,15(2):17-20. 被引量:25
  • 4Casalino L.Optimization of a dual-mixture-ratio hydrogenfuel rocket[J].Joumal of Spacecraft and Rockets,1997,34(4):574-576.
  • 5Trukhan S N,Ivanov V P,Kochubey D I,et al.Ammonia formation on (Ru plus Cs)/C catalysts by the interaction of adsorbed nitrogen with hydrogen that diffused from the bulk of cesium-ruthenium particles[J].Kinetics and Catalysis,2003,44(5):648-651.
  • 6Kubota T,Hayakawa I,Mahuse H,et al.Kinetic study of methanol synthesis from carbon dioxide and hydrogen[J].Applied Organometallic Chemistry,2001,15(2):121-126.
  • 7Armor J N.The multiple roles for catalysis in the production of H2[J].Applied Catalysis A-General,1999,176 (2):159-176.
  • 8Trimm D L,Onsan Z I.Onboard fuel conversion for hydrogen fuel cell driven vehicles[J].Catalysis Reviews-Science and Engineering,2001,43(1-2):31-84.
  • 9Chen Y Z,Wang Y Z,Xu H Y,et al.Efficient production of hydrogen from natural gas steam reforming in palladium membrane reactor[J].Applied Catalysis B-Environmental,2008,81 (3-4):283-294.
  • 10Melo F,Morlanes N.Naphtha steam reforming for hydrogen production[J].Catalysis Today,2005,107-08:458-466.

共引文献12

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部