期刊文献+

基于RankClus算法的机场流程日志活动挖掘 被引量:1

Activity Mining for Airport Event Logs Based on RankClus Algorithm
下载PDF
导出
摘要 流程挖掘技术可以提取机场流程日志中的有用信息用于流程分析。但机场流程日志处于细节化的低抽象层次,不符合分析者的预期。对机场流程日志挖掘得到的流程模型呈现意面状的复杂结构,流程模型的含义难于理解。解决该问题的一种方法是通过活动挖掘,将低抽象层次活动聚类为流程模型中表征高抽象层次活动的活动类簇。为此提出了一种基于Rank Clus算法的活动挖掘方法,将机场流程日志的活动聚类与活动排序评分计算相结合,从而构建更易理解的活动聚类流程模型。实验结果表明,Rank Clus活动聚类流程模型的日志回放一致性与原生日志流程模型大致相当,但在结构复杂度上要显著低于原生日志流程模型。 Process mining is a technology which can extract non-trivial and useful information from airport event logs. However, the airport event logs are always on a detailed level of abstraction, which may not be in line with the expected abstract level of an analyst. Process models generated by these event logs are always spaghetti-like and too hard to comprehend. An approach to overcome this issue is to group low-level events into clusters, which represent the execution of a higher-level activity in the process model. Therefore, this paper presents a new activity mining method which is based on RankClus algorithm to generate activity clusters integrated with ranking. On this basis, the activity-clustered model which is easier to comprehend can be constructed. The experiment results show that this activity-clustered model, which shares a similar level of conformance with the meta model, is significantly less complex.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第8期2033-2039,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61502499) 中国民航科技创新引导资金项目重大专项(MHRD20140105) 中央高校科研业务费专项资金(3122013C005 3122014D032 3122015D015) 中国民航大学科研基金(2013QD18X) 中国民航信息技术科研基地开放课题基金(CAAC-ITRB-201401)~~
关键词 流程挖掘 活动挖掘 RankClus 踪迹聚类 RankClus Process mining Activity mining RankClus Trace clustering
  • 相关文献

参考文献2

二级参考文献35

  • 1Newman M E J. Fast algorithm for detecting communitystructure in networks[J]. Physical Review E, 2004, 69(6):066133-1-066133-5.
  • 2Lancichinetti A, Fortunato S, and Kertesz J. Detecting theoverlapping and hierarchical community structure in complexnetworks[J]. New Journal of Physics, 2009, 11(3):033015-1-033015-18.
  • 3Fallani F D V, Nicosia V, Latora V, et al.. Nonparametricresampling of random walks for spectral network clustering[J].Physical Review E, 2014, 89(1): 012802-1-012802-5.
  • 4Xu Xiao-wei, Yuruk N, Feng Zhi-dan, et al. SCAN: astructural clustering algorithm for networks[C]. Proceedingsof the 13th ACM SIGKDD International Conference onKnowledge Discovery and Data Mining, San Jose, 2007:824-833.
  • 5Zhou Deng-yong, Huang Jia-yuan, and Schdlkopf B. Learningfrom labeled and unlabeled data on a directed graph[C].Proceedings of the 22nd International Conference on MachineLearning, Bonn, 2005: 1036-1043.
  • 6Meila M and Pentney W. Clustering by weighted cuts indirected graphs[C]. Proceedings of the 7th SIAMInternational Conference on Data Mining, Minneapolis, 2007:135-144.
  • 7Ene A, Im S, and Moseley B. Fast clustering usingMapReduce[C]. Proceedings of the 17th ACM SIGKDDInternational Conference on Knowledge Discovery and DataMining, San Diego, 2011: 681-689.
  • 8Cao Yan, Cao Jian, and Li Ming-lu. Distributed datadistribution mechanism in social network based on fuzzyclustering[J]. Foundations and Applications of IntelligentSystems, 2014, 213: 603-620.
  • 9Chen Jia-jun, Chen Ji-meng, Liu Jie, et ai. PSCAN: aparallel structural clustering algorithm for networks[C].Proceedings of the 2013 International Conference on MachineLearning and Cybernetics, Tianjin, 2013: 839-844.
  • 10Zhao Wei-zhong, Venkataswamy M, and Xu Xiao-wei.PSCAN: a parallel structural clustering algorithm for bignetworks in mapReduce[C]. Proceedings of the 2013 IEEE27th International Conference on Advanced InformationNetworking and Applications, Washington DC, 2013:862-869.

共引文献16

同被引文献1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部