期刊文献+

立方KCaF_3电子、弹性和光学性质的第一性原理研究 被引量:2

First principles study of electronic,elastic and optical properties of cubic KCaF_3
下载PDF
导出
摘要 基于密度泛函理论和赝势平面波近似法计算研究了立方钙钛矿KCaF_3的弹性、电子和光学性质.基态时,KCaF_3平衡晶格常数、体积弹性模量和实验及其他计算值一致.根据Hooke定律和Christoffel方程,研究了KCaF_3弹性常数Cij、体积弹性模量B、各向同性波速和弹性各向性异性因子随压力的变化关系.从电子能带理论出发,计算得到了KCaF_3电子能带、态密度和Milliken电荷布居数,并对其电子性质进行了详细分析.结果显示:立方钙钛矿KCaF_3为直接带隙绝缘体材料,其禁带宽度为6.22 e V;电荷主要从Ca和K原子向F原子转移;立方钙钛矿KCaF_3属于纯粹的共价型化合物.同时,本文还计算研究了KCaF_3的光学介电函数、吸收系数、复折射率、能量损失谱和反射系数等光学性质. The electronic , elastic and optical properties of cubic perovskite KCaF 3 were investigated using the pseudo-potential plane wave method within the density functional theory . At ground state , the calculated equilibrium lattice a and bulk modulus B0 are in reasonable agreement with the experimental and other theoretical data .According to the Hooke's law and equation of Christoffel , the de-pendences of the elastic constants Cij , bulk modulus B, isotropic wave velocities and elastic anisotropic factors with the pressure were investigated .From the theory of electronic band structure , we have calculated the band structure, density of states and Mulliken population for cubic perovskite KCaF 3 in detail.The results indicate that the cubic perovskite KCaF 3 is a direct band gap insulator material , the value of the band gap is 6.22 eV, the charge transfer is mainly from Ca and K atom to F atom .KCaF3 is pure covalent bond chemical compounds .At the same time, the dielectric function, adsorption coefficient, refractive index, loss function and reflection coeffi-cient of KCaF 3 were calculated and investigated in this work .
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2016年第4期694-702,共9页 Journal of Atomic and Molecular Physics
基金 新疆科技厅项目基金(2014731009)
关键词 第一性原理 KCaF3 弹性性质 光学性质 First principles KCaF3 Elastic properties Optical properties
  • 相关文献

参考文献1

二级参考文献46

  • 1El Ouenzerfi R,Ono S,Quema A,Goto M,Sakai M,Sarukura N,Nishimatsu T,Terakubo N,Mizuseki H,Kawazoe Y,Sato H,Ehrentraut D,Yoshikawa A and Fukuda T 2004 J.Appl.Phys.96 7655.
  • 2Shimamura K,Sato H,Bensalah A,Sudesh V,Machida H,Sarukura N and Fukuda T 2001 Cryst.Res.Technol.36 801.
  • 3Setter N,Damjanovic D,Eng L,Fox G,Gevorgian S,Hong S,Kingon A,Kohlstedt H,Park N Y,Stephenson G B,Stolitchnov I,Taganstev A K,Taylor D V,Yamada T and Streiffer S 2006 J.Appl.Phys.100 051606.
  • 4Lim S H,Rastogi A C and Desu S B 2004 J.Appl.Phys.96 5673.
  • 5Cooke A H,Jones D A,Silva J F A and Wells M R 1975 Solid State Phys.8 4083.
  • 6Springis M,Sharakovsky A,Tale I and Rogulis U 2005 Phys.Status Solidi C 2 511.
  • 7Nishimatsu T,Terakubo N,Mizuseki H,Kawazoe Y,Pawlak D A,Shimamura K and Fukuda T 2002 Jpn.J.Appl.Phys.41 365.
  • 8Knierim W,Honold A,Brauch U and Durr U 1986 J.Opt.Soc.Am.B 3 119.
  • 9Babu K E,Veeraiah A,Swamy D T and Veeraiah V 2012 Chin.Phys.Lett.29 117102.
  • 10H?rsch G and Paus H J 1986 Opt.Commun.60 69.

共引文献2

同被引文献5

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部