期刊文献+

基于最小平方距离的区间值合作对策求解模型与方法 被引量:20

Models and Method of Interval-valued Cooperative Games Based on the Least Square Distance
原文传递
导出
摘要 现有针对联盟S特征(或支付)值表示为区间值υ(S)=[υL(S),υR(S)]的合作对策(简称区间值合作对策)的研究,多数利用区间算术(比如,区间减法)、特殊排序函数等,并在经典Shapley值基础上进行拓展。本文主要目的是发展一种基于最小平方法的n人区间值合作对策的有效求解方法。首先,利用区间值距离概念和最小平方法,建立以联盟分配与联盟支付值之差的平方和为最小的数学优化模型,据此求解确定每个局中人的区间值分配x_i=[x_(Li),x_(Ri)](i=1,2,…,n),可由解析公式[X_L,X_R]=[A^(-1) B_L,A^(-1) B_R]的相应分量确定,其中B_L=(∑SN:1∈SVL(S),∑SN:2∈SVL(S),…,∑SN:n∈SVL(S)~T,B_R=(∑SN:1∈SV_R(S),∑SN:2∈SV_R(S),…,∑SN:n∈SV_R(S))~TA^(-1)=(1/2^(n-2))(a′_(ij))n×n,且a′_(ij)=-/(n+1)(i≠j时)或n/(n+1)(i=j时)。然后,推广所导出的辅助数学优化模型,使其满足诸如有效性x(N)=υ(N)等要求,进而求解确定每个局中人的区间值分配x′_i=[x′_(Li),x′_(Ri)](i=1,2,…,n),可由解析公式[X′_L,X′_R]=[X_L+(υ_L(N)-n∑i=1x_(Li))e/n,X_R+(υR(N)-n∑i=1xRi)e/n]的相应分量确定。最后,利用一个配送联盟问题的数值实例进行验证与比较分析,说明了所提出模型与方法的有效性、实用性和优越性。文中所提出的研究模型与方法可有效避免区间值减法运算带来的计算结果不确定性扩大等不合理问题,为求解区间值合作对策提供一种新的理论视角和实用工具。 Most of the existing studies on interval-valued cooperative games in which the values of coalitions Sare expressed with intervalsυ(S)= [υL(S),υR(S)]are based on the interval arithmetic(e.g.,interval subtraction)and ranking functions of intervals and hereby are some extensions of the classic Shapley value.The main purpose of this paper is to develop an effective method for solving n-person interval-valued cooperative games based on the least square method.Firstly,according to the concept of the distance between intervals and the least square method,an optimization mathematical model is constructed through considering that players in coalitions try to guarantee their payoffs' sums being as close to the coalitions' values as possible.Through solving the constructed optimization mathematical model,all players' interval-valued payoffs xi=[x(Li),x(Ri)](i=1,2,…,n)can be obtained,which can be determined by the analytical formula[XL,XR]= [A^-1 BL,A^-1 BR],where BL=(∑SN:1∈SVL(S),∑SN:2∈SVL(S),…,∑SN:n∈SVL(S)^T,BR=(∑SN:1∈SVR(S),∑SN:2∈SVR(S),…,∑SN:n∈SVR(S))^T,A^-1=(1/2^n-2)(a′(ij))n×n,and a′(ij)=-/(n+1)if i≠jor n/(n+1)if i=j.Then,the auxiliary optimization mathematical model is extended so that it satisfies some conditions such as the efficiency x(N)=υ(N)and hereby all players' interval-valued payoffs x′′i= [x′(Li),x(Ri)](i=1,2,…,n)are solved,which can be determined by the analytical formula[X′L,X′R]= [XL+(υL(N)-n∑i=1x(Li))e/n,XR+(υR(N)-n∑i=1xRi)e/n],Finally,a numerical example of the dispatch coalition problem isused to conduct the validation and comparison analysis,which has shown that the proposed models and method are of the validity,the applicability,and the superiority.The models and method proposed in this paper can effectively avoid the magnification of uncertainty resulted from the subtraction of intervals and provide a new theoretical angle and suitable tool for solving interval-valued cooperative games.
出处 《中国管理科学》 CSSCI 北大核心 2016年第7期135-142,共8页 Chinese Journal of Management Science
基金 国家自然科学基金重点项目(71231003) 国家自然科学基金资助项目(71171055) 高等学校博士学科点专项科研基金资助课题(20113514110009) 福建省社会科学规划项目(2013C024) 福建省教育厅科技项目(JA13122)
关键词 区间值合作对策 最小平方法 损失函数 配送联盟 数学规划 interval-valued cooperative game least square method loss function dispatch coalition math-ematical programming
  • 相关文献

参考文献14

  • 1Li Dengfeng. Lexicographic method for matrix games with payoffs of triangular fuzzy numbers [J]. International Journal of Uncertainty, Fuzziness and Knowledge- Based Systems, 2008, 16(3):371-389.
  • 2Branzei R, Branzei O, Alparslan G6k S Z, et al. Cooperative interval games: A survey[J]. Central European Journal of Operations Research, 2010, 18(3):397- 411.
  • 3Han Weibin, Sun Hao, Xu Genjiu. A new approach of cooperative interval games: The interval core and Shapley value revisited[J]. Operations Research Letters, 2012, 40(6): 462-468.
  • 4Branzei R, Dimitrov D, Tijs S. Shapley- like values for interval bankruptcy games [J]. Economics Bulletin, 2003, 3(8): 1-8.
  • 5Alparslan GOk S pley value: An Z, Branzei R, Tijs S. The interval Shaaxiomatiezation [J]. Central European Research, 2010, 18(2): 131.
  • 6Mallozzi L, Scalzo V, Tijs S. Fuzzy interval cooperative games[J]. Fuzzy Sets and Systems, 2011, 165(1): 98 -105.
  • 7Alparslan Gok S Z, Miquel S, Tijs S. Cooperation under interval uncertainty [J]. Mathematical Methods of Operational Research, 2009, 69(1): 99-109.
  • 8Branzei R, Alparslan Gok S Z, Branzei O. Cooperation games under interval uncertainty: On the convexity of the interval undominated cores[J]. Central European Journal of Operations Research, 2011, 19 (4) : 523- 532.
  • 9Yu Xiaohui, Zhang Qiang. An extension of cooperative fuzzy games[J]. Fuzzy Sets and Systems, 2010, 161 (11) : 1614-1634.
  • 10Alparslan Gok S Z, Branzei O, Branzei R, et al. Setvalued solution concepts using interval-type payoffs for interval games [J]. Journal of Mathematical Economics, 2011, 47(4-5): 621-626.

二级参考文献18

  • 1陈雯,张强.模糊合作对策的Shapley值[J].管理科学学报,2006,9(5):50-55. 被引量:45
  • 2[1]L.S.Shapley.A value for n-persona games[J].Annals of Math-ematics Studies,1953,(28);307-318.
  • 3[2]Shapley L.S.,On balanced games without sidepaymenta[M].Hu T C.Robinson S M eds.,Math.Programming.Academie Press.1973.
  • 4[3]Shapley L.S.,A value for n-person Games.In:Kuhn HW,Tucker AW(Eds)Contributions to the Theory of Gaes,II.Annals of Mathematics Studies N0.28,Princeton[M].NJ:Princeto uni-versity Press,1953:307-317.
  • 5[5]J.P.Aubin.Coopemtive fuzzy games[J].Matllematical Opemtion Research,198l,(6):l-13.
  • 6[6]J.P.Aubin.Coeur et valeur des jeux flous a paiements lateraux[C].Comptes Rendus Hebdomadaires des Seances de 1'Acad6mie des Sciences,1974,(279-A):891-894.
  • 7[7]J.P.Aubin.Mathematical Methods of Game and Economic Theory[M].North-Holland,Amsterdam,1980.
  • 8[8]D.Butnariu.Fuzzy games:a description of the eoncept[J].Fuzzy Set and System,1978,(1):18l-192.
  • 9[9]D.Butnariu.Stability and shapley value for an n-persons fuzzy games[J].Fuzzy set and System,1980,(4):63-72.
  • 10[10]D.Butnariu,E.P.Klement.Triangular Nom-Based Measures and Games with Fuzzy Coalitions[M].Kluwer,Dordrecht,1993.

共引文献3

同被引文献93

引证文献20

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部