期刊文献+

钛表面接枝聚乙二醇-精氨酸-甘氨酸-天冬氨酸聚合物分子刷对细菌和成骨细胞黏附的影响 被引量:3

Effect of modification of titanium surfaces to graft poly(ethylene glycol) methacrylate-arginine-glycine-aspartic polymer brushes on bacterial adhesion and osteoblast cell attachment
原文传递
导出
摘要 目的研究钛表面接枝聚乙二醇[poly(ethylene glycol) methacrylate, PEG]-精氨酸-甘氨酸-天冬氨酸(arginine-glycine- aspartic, RGD )多肽聚合物分子刷对细菌和成骨细胞黏附的影响,探讨使种植体具有抗感染和加速骨结合功能的表面处理方法。方法采用原子转移自由基聚合反应在固定有引发剂2-溴异丁酰溴的钛表面(Ti-Br)接枝PEG(Ti-PEG),在PEG分子末端接枝RGD多肽(Ti-PEG-RGD)。用接触角测量仪和X射线光电子能谱仪对纯钛、Ti-Br、Ti-PEG和Ti-PEG-RGD进行表征;分别在纯钛组、Ti-PEG组、Ti-PEG-RGD组试件表面进行变形链球菌(Streptococcus mutans,Sm)、内氏放线菌(Actinomyces naeslundii,An)和成骨细胞MC3T3培养,行荧光显微镜和扫描电镜观测。结果纯钛、Ti-Br、Ti-PEG、Ti-PEG-RGD表面接触角分别为〈10°、80°、45°、55°;X射线光电子能谱显示聚合物分子刷被成功接枝于钛表面。荧光显微镜和扫描电镜显示:纯钛培养Sm和An24h后表面黏附大量细菌,而Ti-PEG、Ti-PEG-RGD组细菌黏附较少,且散在分布;成骨细胞在纯钛和Ti-PEG组表面黏附较少,Ti-PEG-RGD组则黏附大量成骨细胞。结论钛表面接枝PEG能抑制细菌及成骨细胞黏附,而接枝PEG-RGD不仅能抑制细菌黏附还能促进成骨细胞黏附。 Objective To study the effect of poly(ethylene glycol) methacrylate(PEG)-arginine- glycine-aspartie(RGD) polymer brushes graft on bacterial adhesion and MC3T3 osteoblast cell attachment on titanium, and to investigate if the modification of titanium will enable the implant to be anti-fouling and promot osteointegration. Methods PEG was tethered on titanium surface modified with 2-bromoisobutyryl bromide(denoted as Ti-Br) to form Ti-PEG brushes. Functionalization of the Ti-PEG surface with RGD was performed to form Ti-PEG-RGD brushes. The chemical composition of modified titanium surfaces was characterized by X-ray photoelectron spectroscopy(XPS). Changes in surface hydrophilicity and hydrophobicity were characterized by static water contact angle measurements. Streptococcus mutans(Sm), Actinomyces naeslundii(An) and osteoblast cell were cultured on pure titanium(Ti), Ti-PEG, Ti-PEG-RGDsurfaces respectively. There were ten samples in each group. The bacterial adhesion ability and cell attachment were confirmed by fluorescence microscopy and scanning electron microscopy(SEM). Results The static water contact angle of Ti, Ti-Br, Ti-PEG, Ti-PEG-RGD was less than 10°, 80°, 45°, 55° respectively. XPS confirmed that PEG-RGD brushes were successfully tethered on titanium surfaces. Anti- bacterial test showed that on the pure-Ti, there were large amount of bacteria from both groups, however, in the Ti-PEG, Ti-PEG-RGD surfaces, both kind of bacteria were rare and distributed diffusely. Cell culture test showed that on the Ti-PEG-RGD surfaces, the number of cells was significantly more than that on the Ti and the Ti-PEG surfaces. Conclusions PEG can inhibit both kind of bacteria adhesion and osteoblast cell attachment, and PEG-RGD brushes can not only inhibit bacterial adhesion but also promote osteoblast cell attachment.
出处 《中华口腔医学杂志》 CAS CSCD 北大核心 2016年第8期491-495,共5页 Chinese Journal of Stomatology
关键词 细菌黏附 成骨细胞 聚乙烯二醇类 肽类 Titanium Bacterial adhesion Osteoblasts Polyethylene glycols Peptides
  • 相关文献

参考文献23

  • 1Monti S, Alderighi M, Duce C, et al. Adsorption of ionic peptides on inorganic supports[J]. J Phys Chem C, 2009, 113 (6): 2433-2442. DOI: 10.1021/jp809297c.
  • 2Park JH, Schwartz Z, Olivares-Navarrete R, et al. Enhancement of surface wettability via the modification of microtextured titanium implant surfaces with polyelectrolytes [J]. Langmuir, 2011, 27(10): 5976-5985. DOI: 10.1021/ la2000415.
  • 3Teshima K, Wagata H, Sakurai K, et al. High-quality ultralong hydroxyapatite nanowhiskers grown directly on titanium surfaces by novel low-temperature flux coating method[J]. Cryst Growth Des, 2012, 12(10): 4890-4896. DOI: 10.1021/ cg3007469.
  • 4Liu ST, Chen LJ, Tan L, et al. A high efficiency approach for a titanium surface antifouling modification: PEG-o-quinone linked with titanium via electron transfer process[J]. J Mater Chem B, 2014, 2(39): 6758-6766. DOI: 10.1039/c4tb01014k.
  • 5Ren X, Wu Y, Cheng Y, et al. Fibroneetin and bone morphogenetic protein- 2- decorated poly(OEGMA- r- HEMA) brushes promote osseointegration of titanium surfaces[J]. Langrnuir, 2011, 27(19): 12069-12073. DOI: 10.1021/ la202438u.
  • 6Groll J, Fiedler J, Engelhard E, et al. A novel star PEG- derived surface coating for specific cell adhesion[J]. J Biomed Mater Res A, 2005, 74(4): 607-617. DOI: 10.1002/jbm. a.30335.
  • 7Khoo X, Hamilton P, O'Toole GA, et al. Directed assembly of PEGylated-peptide coatings for infection-resistant titanium metal[J]. J Am Chem Soe, 2009, 131(31): 10992-10997. DOI: 10.1021/ja9020827.
  • 8Meyers SR, Grinstaff MW. Biocompatible and bioaetive surface modifications for prolonged in vivo efficacy[J]. Chem Rev, 2012, 112(3): 1615-1632. DOI: 10.1021/cr2000916.
  • 9Neoh KG, Kang ET. Combating bacterial colonization on metals via polymer coatings: relevance to marine and medical applications[J]. ACS Appl Mater Interfaces, 2011, 3(8): 2808-2819. DOI: 10.1021/am200646t.
  • 10Gao G, Yu K, Kindrachuk J, et al. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity[J]. Biomacromolecules, 2011, 12(10): 3715-3727. DOI: 10.1021/bm2009697.

二级参考文献15

  • 1李保强,胡巧玲,汪茫,沈家骢.原位复合法制备层状结构的壳聚糖/羟基磷灰石纳米材料[J].高等学校化学学报,2004,25(10):1949-1952. 被引量:30
  • 2蓝旭,杨志明,葛宝丰,刘雪梅.Culture of osteoblasts on bio-derived bones[J].Chinese Journal of Traumatology,2005,8(2):86-90. 被引量:12
  • 3M. C. Durrieu,S. Pallu,F. Guillemot,R. Bareille,J. Amédée,Ch. Baquey,C. Labrugère,M. Dard. Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion[J] 2004,Journal of Materials Science: Materials in Medicine(7):779~786
  • 4Michael D. Ward,Micah Dembo,Daniel A. Hammer Ph.D.. Kinetics of cell detachment: Effect of ligand density[J] 1995,Annals of Biomedical Engineering(3):322~331
  • 5Eaninwene G N, Yao C, Webster T J. Enhanced osteoblast adhe- sion to drug-coated anodized nanotubular titanium surfaces [ J]. Int J Nanomedicine, 2008, 3(2) :257 -64.
  • 6Balasundaram G, Yao C, Webster T J. TiO2 nanotubes functional- ized with regions of bone morphogenetic protein-2 increases osteo-blast adhesion[J]. J Biomed Mater Res A, 2008, 84(2) :447 - 53.
  • 7Cao X, Yu W Q, Qiu J, et al. RGD peptide immobilized on TiO2 nanotubes for increased bone marrow stromal cells adhesion and os- teogenic gene expression[ J]. J Mater Sci Mater Med, 2012, 23 (2) :527 -36.
  • 8Wang D, Mao J, Zhou B, et al. A chimeric peptide that binds to titanium and mediates MC3T3-E1 cell adhesion [ J ]. Biotechnol Lett, 2011, 33(1) :191 -7.
  • 9Yao C, Slamovich E B, Webster T J. Enhanced osteoblast func- tions on anodized titanium with nanotube-like structures[J]. J Bi- omed Mater Res A, 2008, 85 (1) :157 -66.
  • 10Germanier Y, Tosatti S, Broggini N, et al. Enhanced bone appo- sition around biofunctionalized sandblasted and acid-etched titani- um implant surfaces. A histomorphometric study in miniature pigs [J]. Clin Oral Implants Res, 2006, 17(3) :251 -7.

共引文献5

同被引文献22

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部