期刊文献+

PM2.5金属暴露与尿金属的关系:一项基于固定群组的基线调查研究 被引量:3

Association between personal exposure to metals in fine particulate matter and urinary metals: baseline results from a panel study
原文传递
导出
摘要 目的 探讨21种金属离子浓度在PM2.5和人体晨尿中的相关关系,为阐明尿中金属的主要暴露来源提供证据。方法 于2011年4—5月招募了在本地居住5年以上、年龄在18到80岁的3 035名武汉市社区居民,从中采用单纯随机抽样法抽取120名居民组成固定群组,对其中研究对象进行问卷调查、采集静脉血并收集其清晨尿样,进行体格检查排除变量缺失个体后,最终得到83名调查对象。采用个体采样器连续24 h采集研究对象暴露的PM2.5浓度;采用电感耦合等离子体质谱仪测定颗粒物和尿中铝、钛、钒、铬、锰、钴、镍、铜、锌、砷、硒、铷、锶、钼、镉、锡、锑、钡、钨、铊和铅共21种金属离子浓度。采用线性回归模型分析21种金属在研究对象个体中的PM2.5暴露水平和尿中金属浓度的相关关系。结果 研究对象年龄为(51.5±6.3)岁。校正年龄、性别、BMI、吸烟状态、文化程度以及收入水平后,随着个体PM2.5中铬暴露水平的升高,尿中铬浓度也呈升高趋势,低铬暴露组(〈12.491 ng/m3)、中铬暴露组(12.491~32.388 ng/m3)、高铬暴露组(〉32.388 ng/m3)对象的尿铬浓度分别为(-1.334±0.756)、(-1.114±0.813)和(-0.718± 0.645)μg/mmol肌酐(P=0.009),经过校正多重比较后,尿铬与PM2.5中铬的相关性差异没有统计学意义(P=0.129)。本研究发现其他20种金属离子在PM2.5与尿中金属值差异没有统计学意义(P值均〉0.05)。结论 人体尿中排泄的金属离子可能并不主要来源于空气暴露。 Objective To investigate the associations between 21 metals in fine particulate matter (PM2.5) and their corresponding concentrations in urine in the general population.Methods Between April and May 2011, this panel study enrolled 120 residents using random sampling approach in Wuhan communities which contained 3 035 subjects. Participants were aged 18 to 80 years and had lived in the sampling buildings for at least 5 years. Data from basic questionnaires, physical examinations, and morning blood and urine samples under fasting conditions were collected. Participants with missing data were excluded. Finally, 83 particpants included. Participants were instructed to use personal air samplers to continuously monitor PM2.5 for 24 h. The following 21 metals were measured in PM2.5 and urine by inductively coupled plasma mass spectrometry: aluminum, titanium, vanadium, chromium, manganese, cobalt, nickel, copper, zinc, arsenic, selenium, rubidium, strontium, molybdenum, cadmium, tin, antimony, barium, tungsten, thallium and lead. The associations between PM2.5 metals and urinary metals were investigated using generalized linear regression models.Results The age of the study population was (51.5±6.3)years. After adjusting for age, sex, smoking status, BMI, education and income, elevated urinary chromium was significantly associated with increased chromium concentrations in personal PM2.5. The least square means (standard deviation) of urinary chromium in participants classified as having low exposure (〈12.491 ng/m3), intermediate exposure (12.491-32.388 ng/m3) and high exposure (〉32.388 ng/m3) were (-1.334±0.756), (-1.114±0.813) and (-0.718±0.645) μg/mmol creatinine, respectively (P=0.009). However, the association between urinary and personal PM chromium was not observed after additionally adjusting for false discovery rate (P〉0.05). Furthermore, the results demonstrated that other metals in PM2.5 were not related to their corresponding concentrations in urine of subjects.Conclusion Urinary concentrations of metals did not reflect human exposure to metals in air, and may not be appropriate as an index to assess personal exposure to metals in particulate matter.
出处 《中华预防医学杂志》 CAS CSCD 北大核心 2016年第8期673-679,共7页 Chinese Journal of Preventive Medicine
基金 国家重点基础研究发展计划(2011CB503800)
关键词 颗粒物 金属 尿 暴露 固定群组 Particulate matter Metals Urine Exposure Panel study
  • 相关文献

参考文献18

  • 1BrookRD, RajagopalanS, PopeCA, et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association[J]. Circulation, 2010,121(21):2331-2378. DOI: 10.1161/CIR.0b013e3181dbece1.
  • 2HaoY, BalluzL, StrosniderH, et al. Ozone, Fine particulate matter, and chronic lower respiratory disease mortality in the United States[J]. Am J Respir Crit Care Med, 2015,192(3):337-341. DOI: 10.1164/rccm.201410-1852OC.
  • 3LippmannM, ChenLC, GordonT, et al. National Particle Component Toxicity (NPACT) Initiative: integrated epidemiologic and toxicologic studies of the health effects of particulate matter components[J]. Res Rep Health Eff Inst, 2013,(177):5-13.
  • 4CaoJ, XuH, XuQ, et al. Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city[J]. Environ Health Perspect, 2012,120(3):373-378. DOI: 10.1289/ehp.1103671.
  • 5OstroB, HuJ, GoldbergD, et al. Associations of mortality with long-term exposures to fine and ultrafine particles, species and sources: results from the California Teachers Study Cohort[J]. Environ Health Perspect, 2015,123(6):549-556. DOI: 10.1289/ehp.1408565.
  • 6WolfK, StafoggiaM, CesaroniG, et al. Long-term Exposure to Particulate Matter Constituents and the Incidence of Coronary Events in 11 European Cohorts[J]. Epidemiology, 2015,26(4):565-574. DOI: 10.1097/EDE.0000000000000300.
  • 7MagariSR, SchwartzJ, WilliamsPL, et al. The association of particulate air metal concentrations with heart rate variability[J]. Environ Health Perspect, 2002,110(9):875-880.
  • 8HongYC, PanXC, KimSY, et al. Asian Dust Storm and pulmonary function of school children in Seoul[J]. Sci Total Environ, 2010,408(4):754-759. DOI: 10.1016/j.scitotenv.2009.11.015.
  • 9郑玉新.人群环境化学物生物监测——评价暴露水平与卫生政策制定的依据[J].中华预防医学杂志,2014,48(2):81-82. 被引量:5
  • 10FengW, HeX, ChenM, et al. Urinary metals and heart rate variability: a cross-sectional study of urban adults in Wuhan, China[J]. Environ Health Perspect, 2015,123(3):217-222. DOI: 10.1289/ehp.1307563.

二级参考文献40

  • 1Briggs D,Collins S,Elliot P,et al.Mapping urban air pollution using GIS:a regression-based approach[J].Geogr.Inf.Sci.,1997,11:699-718.
  • 2Hock G,Beelen R,Hoogh K D,et al.A review of land-use regression models to assess spatial variation of outdoor air pollution[J].Atmospheric Environment,2008,5:1-18.
  • 3Arain M A,Blair R,Finkelstein N,et al.The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies[J].Atmospheric Environment,2007,41:3453-3464.
  • 4Su J G,Brauer M,Ainslie B,et al.An innovative land use regression model incorporating meteorology for exposure analysis[J].Science of the Total Environment,2007,10:520-528.
  • 5Henderson S B,Beckerman B,.lerrett M,et al.Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and free particulate matter[J].Environmental Science and Technology,2007,41:2422-2428.
  • 6Ross Z,Jerrett M,Ito K,et al.A land use regression for predicting fine particulate matter concentrations in the New York City region[J].Atmospheric Environment,2006,41:2255-2268.
  • 7Ryan P H,LeMaaters G K,Levin L,et al.A land-use regression model for estimating micrnenvironmental diesel exposure given multiple addresses from birth through childhood[J].Science of the Total Environment,2008,5:139-147.
  • 8Mavko M E,Tang B,George L A.A sub-neighborhood scale land use regression model for predicting NO2[J].Science of the Total Environment,2008,2:68-74.
  • 9Slama R,Morgonstem V,Cyrys J,et al.Traffic-related atmospheric pollutants levels during pregnancy and offspring's term birth weight:a study relying on a land-use regression exposure model[J].Resesrch,2007,115:1283-1292.
  • 10Ryan P H.Land-use regression modeling of diesel exhaust particles and allergic and respiratory disease in children[D].Cincinnati United States:Epidemiology and Biostatistics of the Department of Environmental Health of the College of Medicine,University of Cincinnati,2007.

共引文献59

同被引文献35

引证文献3

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部