期刊文献+

面向新型处理器的数据密集型计算 被引量:3

New Processor for Data-Intensive Computing
下载PDF
导出
摘要 近年来,随着数据量的不断增大,数据密集型计算任务变得日益繁重.如何能够快速、高效地实现在大规模数据集上的计算,已成为数据密集型计算的主要研究方向.最近几年,研究人员利用新型的硬件处理器对数据密集型计算进行加速处理,并针对不同新型处理器的特点,设计了不同形式的加速处理算法.主要对新型硬件处理器基于数据密集型计算的研究进行了综述.首先概述了新型硬件处理器的特点;然后,分别对新型处理器FPGA和GPU等硬件进行性能分析,并分析了每种处理器对数据密集型计算的效果;最后提出了进一步的研究方向. In recent years, with increased data volume, data-intensive computing tasks become increasingly critical. How to efficiently and effectively implement data-intensive computing on large data sets becomes a major research direction for data-intensive computing. Currently, researchers attempt to use new processors to accelerate the data-intensive computing process. Different acceleration approaches could be adopted according to the characteristics of new processors. In this paper, the new processors, well as the algorithms, for data-intensive computing research are surveyed. First, the new features of processors are reviewed. Then the capability of each new processors and their performance over data intensive computing are analyzed. Finally, the future research directions are discussed.
出处 《软件学报》 EI CSCD 北大核心 2016年第8期2048-2067,共20页 Journal of Software
基金 国家自然科学基金(61472099 61133002) 国家科技支撑计划(2015BAH10F01)~~
关键词 FPGA GPU CPU 数据密集型计算 FPGA GPU CPU data-intensive computing
  • 相关文献

参考文献106

  • 1Xi S, Babarinsa O, Athanassoulis M, Idreos S. Beyond the wall: Near-Data processing for databases. In: Proc. of the Int'l Workshop on Data Management on New Hardware. 2015. [doi: 10.1145/2771937.2771945 ].
  • 2Aingaran K, Smcntek D, Wicki T, Jairath S, Konstadinidis G, Leung S, Loewenstein P, McAllister C, Phillips S, Radovic Z, Sivaramakfishnan R. M7: Oracle's next-generation spare processor. IEEE Micro, 2015,2:36-45. [doi: 10.1109/MM.2015.35].
  • 3Choi SH, Park N, Song YH, Lee SW. ASiPEC: An application specific instruction-set processor for high performance entropy coding. In: Proc. of the Ubiquitous Computing Application and Wireless Sensor. Springer-Verlag, 2015.67-75. [doi: 10.1007/978- 94-017-9618-7_7].
  • 4Francisco P. The Netezza data appliance architecture: A platform for high performance data warehousing and analytics. IBM Redbooks, 2011.
  • 5Becher A, Bauer F, Ziener D, Teich J. Energy-Aware SQL query acceleration through FPGA-based dynamic partial reconfiguration. In: Proc. of 2014 the 24th Int'l Conf. on Field Programmable Logic and Applications (FPL). IEEE, 2014. 1-8. [doi: 10.1109/FPL. 2014.6927502].
  • 6Mueller R, Teubner J, Alonso G. Glacier: A query-to-hardware compiler. In: Proc. of the 2010 ACM SIGMOD Int'l Conf. on Management of Data. ACM Press, 2010.1159-1162. [doi: 10.1145/1807167.1807307].
  • 7Dennl C, Ziener D, Teich J. On-the-Fly composition of FPGA-based SQL query accelerators using a partially reconfigurable module library. In: Proe. of the Annual IEEE Symp. on Field-Programmable Custom Computing Machines. IEEE, 2012. 45-52. [doi: 10.1109/FCCM.2012.18].
  • 8Woods L, Istvlin Z, Alonso G. Ibex: An intelligent storage engine with support for advanced SQL offloading. Proc. of the VLDB Endowment, 2014,7(11):963-974. [doi: 10.14778/2732967.2732972].
  • 9Scofield TC, Delmerico JA, Chaudhary V, Valente G. Xtremedata dbx: An FPGA-based data warehouse appliance. Computing in Science & Engineering, 2010,12(4):66-73. [doi: 10.1109/MCSE.2010.93].
  • 10Sukhwani B, Min H, Thoennes M, Dube P, Iyer B, Brezzo B, Dillenberger D, Asaad S. Database analytics acceleration using FPGAs. In: Proc. of the 21st Int'l Conf. on Parallel Architectures and Compilation Techniques. ACM Press, 2012.411-420. [doi: 10.1145/2370816.2370874].

同被引文献25

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部